skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Intermediate-mass Black Hole Progenitors from Stellar Collisions in Dense Star Clusters
Abstract Very massive stars (VMSs) formed via a sequence of stellar collisions in dense star clusters have been proposed as the progenitors of massive black hole seeds. VMSs could indeed collapse to form intermediate-mass black holes, which would then grow by accretion to become the supermassive black holes observed at the centers of galaxies and powering high-redshift quasars. Previous studies have investigated how different cluster initial conditions affect the formation of a VMS, including mass segregation, stellar collisions, and binaries, among others. In this study, we investigate the growth of VMSs with a new grid of Cluster Monte Carlo star cluster simulations—the most expansive to date. The simulations span a wide range of initial conditions, varying the number of stars, cluster density, stellar initial mass function (IMF), and primordial binary fraction. We find a gradual shift in the mass of the most massive collision product across the parameter space; in particular, denser clusters born with top-heavy IMFs provide strong collisional regimes that form VMSs with masses easily exceeding 1000M. Our results are used to derive a fitting formula that can predict the typical mass of a VMS formed as a function of the star cluster properties. Additionally, we study the stochasticity of this process and derive a statistical distribution for the mass of the VMS formed in one of our models, recomputing the model 50 times with different initial random seeds.  more » « less
Award ID(s):
2108624
PAR ID:
10517861
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
969
Issue:
1
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 29
Size(s):
Article No. 29
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Dynamical interactions in dense star clusters could significantly influence the properties of black holes, leaving imprints on their gravitational-wave signatures. While previous studies have mostly focused on repeated black hole mergers for spin and mass growth, this work examines the impact of physical collisions and close encounters between black holes and (noncompact) stars. Using Monte CarloN-body models of dense star clusters, we find that a large fraction of black holes retained upon formation undergo collisions with stars. Within our explored cluster models, the proportion of binary black hole mergers affected by stellar collisions ranges from 10%–60%. If all stellar-mass black holes are initially nonspinning, we find that up to 40% of merging binary black holes may have components with dimensionless spin parameterχ ≳ 0.2 because of prior stellar collisions, while typically about 10% have spins nearχ = 0.7 from prior black hole mergers. We demonstrate that young star clusters are especially important environments, as they can produce collisions of black holes with very massive stars, allowing for significant spin-up of the black holes through accretion. Our predictions for black hole spin distributions from these stellar collisions highlight their sensitivity to accretion efficiency, underscoring the need for detailed hydrodynamic calculations to better understand the accretion physics following these interactions. 
    more » « less
  2. The surface brightness profiles of globular clusters are conventionally described with the well-known King profile. However, observations of young massive clusters (YMCs) in the local Universe suggest that they are better fit by simple models with flat central cores and simple power-law densities in their outer regions (such as the Elson-Fall-Freeman, or EFF, profile). Depending on their initial central density, YMCs may also facilitate large numbers of stellar collisions, potentially creating very massive stars that will directly collapse into intermediate-mass black holes (IMBHs). Using Monte CarloN-body models of YMCs, we show that EFF-profile clusters transform to Wilson or King profiles through natural dynamical evolution, but that their finalW0parameters do not strongly correlate to their initial concentrations. In the densest YMCs, runaway stellar mergers can produce stars that collapse into IMBHs, with their final masses depending on the treatment of the giant star envelopes during collisions. If a common-envelope prescription is assumed, where the envelope is partially or entirely lost, stars form with masses up to 824M, collapsing into IMBHs of 232M. Alternatively, if no mass loss is assumed, stars as massive as 4000Mcan form, collapsing into IMBHs of ∼4000M. In doing so, these runaway collisions also deplete the clusters of their primordial massive stars, reducing the number of stellar-mass BHs by as much as ∼40%. This depletion will accelerate the core collapse, suggesting that the process of IMBH formation itself may produce the high densities observed in some core-collapsed clusters. 
    more » « less
  3. Abstract The globular cluster 47 Tucanae (47 Tuc) is one of the most massive star clusters in the Milky Way and is exceptionally rich in exotic stellar populations. For several decades it has been a favorite target of observers, and yet it is computationally very challenging to model because of its large number of stars (N≳ 106) and high density. Here we present detailed and self-consistent 47 Tuc models computed with theCluster Monte Carlocode (CMC). The models include all relevant dynamical interactions coupled to stellar and binary evolution, and reproduce various observations, including the surface brightness and velocity dispersion profiles, pulsar accelerations, and numbers of compact objects. We show that the present properties of 47 Tuc are best reproduced by adopting an initial stellar mass function that is both bottom-heavy and top-light relative to standard assumptions (as in, e.g., Kroupa 2001), and an initial Elson profile (Elson et al. 1987) that is overfilling the cluster’s tidal radius. We include new prescriptions inCMCfor the formation of binaries through giant star collisions and tidal captures, and we show that these mechanisms play a crucial role in the formation of neutron star binaries and millisecond pulsars in 47 Tuc; our best-fit model contains ∼50 millisecond pulsars, 70% of which are formed through giant collisions and tidal captures. Our models also suggest that 47 Tuc presently contains up to ∼200 stellar-mass black holes, ∼5 binary black holes, ∼15 low-mass X-ray binaries, and ∼300 cataclysmic variables. 
    more » « less
  4. Abstract Merging binary black holes (BBHs) formed dynamically in dense star clusters are expected to have uncorrelated spin–orbit orientations since they are assembled through many random interactions. However, measured effective spins in BBHs detected by LIGO/Virgo/KAGRA hint at additional physical processes that may introduce anisotropy. Here we address this question by exploring the impact of stellar collisions and accretion of collision debris on the spin–orbit alignment in merging BBHs formed in dense star clusters. Through hydrodynamic simulations, we study the regime where the disruption of a massive star by a BBH causes the stellar debris to form individual accretion disks bound to each black hole (BH). We show that these disks, which are randomly oriented relative to the binary orbital plane after the initial disruption of the star, can be reoriented by strong tidal torques in the binary near pericenter passages. Following accretion by the BHs on longer timescales, BBHs with small but preferentially positive effective spin parameters (χeff≲ 0.2) are formed. Our results indicate that BBH collisions in young massive star clusters could contribute to the observed trend toward small positiveχeff, and we suggest that the standard assumption often made that dynamically assembled BBHs should have isotropically distributed BH spins is not always justified. 
    more » « less
  5. Abstract GW231123, the most massive binary black hole (BBH) merger detected by LIGO–Virgo–KAGRA, highlights the need to understand the origins of massive, high-spin stellar black holes (BHs). Dense star clusters provide natural environments for forming such systems, beyond the limits of standard massive star evolution to core collapse. While repeated BBH mergers can grow BHs through dynamical interactions (the so-called “hierarchical merger” channel), most star clusters with masses ≲106Mhave escape speeds too low to retain higher-generation BHs, limiting growth into or beyond the mass gap. In contrast, BH–star collisions with subsequent accretion of the collision debris can grow and retain BHs irrespective of the cluster escape speed. UsingN-body (Cluster Monte Carlo) simulations, we study BH growth and spin evolution through this process, and we find that accretion can drive BH masses up to at least ∼200M, with spins set by the details of the growth history. BHs up to about 150Mcan reach dimensionless spinsχ ≳ 0.7 via single coherent episodes, while more massive BHs form through multiple stochastic accretion events and eventually spin down toχ ≲ 0.4. These BHs later form binaries through dynamical encounters, producing BBH mergers that contribute up to ∼10% of all detectable events, comparable to predictions for the hierarchical channel. However, the two pathways predict distinct signatures: hierarchical mergers yield more unequal mass ratios, whereas accretion-grown BHs preferentially form near-equal-mass binaries. The accretion-driven channel allows dense clusters with low escape speeds, such as globular clusters, to produce highly spinning BBHs with both components in or above the mass gap, providing a natural formation pathway to GW231123-like systems. 
    more » « less