skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 2 until 12:00 AM ET on Saturday, May 3 due to maintenance. We apologize for the inconvenience.


Title: Intermediate-mass Black Hole Progenitors from Stellar Collisions in Dense Star Clusters
Abstract Very massive stars (VMSs) formed via a sequence of stellar collisions in dense star clusters have been proposed as the progenitors of massive black hole seeds. VMSs could indeed collapse to form intermediate-mass black holes, which would then grow by accretion to become the supermassive black holes observed at the centers of galaxies and powering high-redshift quasars. Previous studies have investigated how different cluster initial conditions affect the formation of a VMS, including mass segregation, stellar collisions, and binaries, among others. In this study, we investigate the growth of VMSs with a new grid of Cluster Monte Carlo star cluster simulations—the most expansive to date. The simulations span a wide range of initial conditions, varying the number of stars, cluster density, stellar initial mass function (IMF), and primordial binary fraction. We find a gradual shift in the mass of the most massive collision product across the parameter space; in particular, denser clusters born with top-heavy IMFs provide strong collisional regimes that form VMSs with masses easily exceeding 1000M. Our results are used to derive a fitting formula that can predict the typical mass of a VMS formed as a function of the star cluster properties. Additionally, we study the stochasticity of this process and derive a statistical distribution for the mass of the VMS formed in one of our models, recomputing the model 50 times with different initial random seeds.  more » « less
Award ID(s):
2108624
PAR ID:
10517861
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
969
Issue:
1
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 29
Size(s):
Article No. 29
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The globular cluster 47 Tucanae (47 Tuc) is one of the most massive star clusters in the Milky Way and is exceptionally rich in exotic stellar populations. For several decades it has been a favorite target of observers, and yet it is computationally very challenging to model because of its large number of stars (N≳ 106) and high density. Here we present detailed and self-consistent 47 Tuc models computed with theCluster Monte Carlocode (CMC). The models include all relevant dynamical interactions coupled to stellar and binary evolution, and reproduce various observations, including the surface brightness and velocity dispersion profiles, pulsar accelerations, and numbers of compact objects. We show that the present properties of 47 Tuc are best reproduced by adopting an initial stellar mass function that is both bottom-heavy and top-light relative to standard assumptions (as in, e.g., Kroupa 2001), and an initial Elson profile (Elson et al. 1987) that is overfilling the cluster’s tidal radius. We include new prescriptions inCMCfor the formation of binaries through giant star collisions and tidal captures, and we show that these mechanisms play a crucial role in the formation of neutron star binaries and millisecond pulsars in 47 Tuc; our best-fit model contains ∼50 millisecond pulsars, 70% of which are formed through giant collisions and tidal captures. Our models also suggest that 47 Tuc presently contains up to ∼200 stellar-mass black holes, ∼5 binary black holes, ∼15 low-mass X-ray binaries, and ∼300 cataclysmic variables. 
    more » « less
  2. Context.In addition to being spectacular objects, very massive stars (VMSs) are suspected to have a tremendous impact on their environment and on cosmic evolution in general. The nucleosynthesis both during their advanced stages and their final explosion may contribute greatly to the overall enrichment of the Universe. Their resulting supernovae are candidates for the most superluminous events possible and their extreme conditions also lead to very important radiative and mechanical feedback effects, from local to cosmic scale. Aims.We explore the impact of rotation and metallicity on the evolution of VMSs over cosmic time. Methods.With the recent implementation of an equation of state in the GENEC stellar evolution code, which is appropriate for describing the conditions in the central regions of very massive stars in their advanced phases, we present new results on VMS evolution from Population III to solar metallicity. Results.Low-metallicity VMS models are highly sensitive to rotation, while the evolution of higher-metallicity models is dominated by mass-loss effects. The mass loss strongly affects their surface velocity evolution, breaking quickly at high metallicity while reaching the critical velocity for low-metallicity models. Comparison to observed VMSs in the LMC shows that the mass-loss prescriptions used for these models are compatible with observed mass-loss rates. In our framework for modeling rotation, our models of VMS need a high initial velocity in order to reproduce the observed surface velocities. The surface enrichment of these VMSs is difficult to explain with only one initial composition, and could suggest multiple populations in the R136 cluster. At a metallicity typical of R136, only our non- or slowly rotating VMS models may produce pair-instability supernovae. The most massive black holes that can be formed are less massive than about 60M. Conclusions.Direct observational constraints on VMS are still scarce. Future observational campaigns will hopefully gather more pieces of information to guide the theoretical modeling of these objects, whose impacts can be very important. VMS tables are available at the CDS. 
    more » « less
  3. ABSTRACT We report the formation of bound star clusters in a sample of high-resolution cosmological zoom-in simulations of z ≥ 5 galaxies from the Feedback In Realistic Environments project. We find that bound clusters preferentially form in high-pressure clouds with gas surface densities over $$10^4\, \mathrm{ M}_{\odot }\, {\rm pc}^{-2}$$, where the cloud-scale star formation efficiency is near unity and young stars born in these regions are gravitationally bound at birth. These high-pressure clouds are compressed by feedback-driven winds and/or collisions of smaller clouds/gas streams in highly gas-rich, turbulent environments. The newly formed clusters follow a power-law mass function of dN/dM ∼ M−2. The cluster formation efficiency is similar across galaxies with stellar masses of ∼107–$$10^{10}\, \mathrm{ M}_{\odot }$$ at z ≥ 5. The age spread of cluster stars is typically a few Myr and increases with cluster mass. The metallicity dispersion of cluster members is ∼0.08 dex in $$\rm [Z/H]$$ and does not depend on cluster mass significantly. Our findings support the scenario that present-day old globular clusters (GCs) were formed during relatively normal star formation in high-redshift galaxies. Simulations with a stricter/looser star formation model form a factor of a few more/fewer bound clusters per stellar mass formed, while the shape of the mass function is unchanged. Simulations with a lower local star formation efficiency form more stars in bound clusters. The simulated clusters are larger than observed GCs due to finite resolution. Our simulations are among the first cosmological simulations that form bound clusters self-consistently in a wide range of high-redshift galaxies. 
    more » « less
  4. Abstract The existence of black holes (BHs) with masses in the range between stellar remnants and supermassive BHs has only recently become unambiguously established. GW190521, a gravitational wave signal detected by the LIGO/Virgo Collaboration, provides the first direct evidence for the existence of such intermediate-mass BHs (IMBHs). This event sparked and continues to fuel discussion on the possible formation channels for such massive BHs. As the detection revealed, IMBHs can form via binary mergers of BHs in the “upper mass gap” (≈40–120M). Alternatively, IMBHs may form via the collapse of a very massive star formed through stellar collisions and mergers in dense star clusters. In this study, we explore the formation of IMBHs with masses between 120 and 500Min young, massive star clusters using state-of-the-art Cluster Monte Carlo models. We examine the evolution of IMBHs throughout their dynamical lifetimes, ending with their ejection from the parent cluster due to gravitational radiation recoil from BH mergers, or dynamical recoil kicks from few-body scattering encounters. We find thatallof the IMBHs in our models are ejected from the host cluster within the first ∼500 Myr, indicating a low retention probability of IMBHs in this mass range for globular clusters today. We estimate the peak IMBH merger rate to be 2 Gpc 3 yr 1 at redshiftz≈ 2. 
    more » « less
  5. The mode of star formation that results in the formation of globular clusters and young massive clusters is difficult to constrain through observations. We present models of massive star cluster formation using the TORCHframework, which uses the Astrophysical MUltipurpose Software Environment (AMUSE) to couple distinct multi-physics codes that handle star formation, stellar evolution and dynamics, radiative transfer, and magnetohydrodynamics. We upgraded TORCHby implementing the N-body code PETAR, thereby enabling TORCHto handle massive clusters forming from 106Mclouds with ≥105individual stars. We present results from TORCHsimulations of star clusters forming from 104,  105, and 106Mturbulent spherical gas clouds (named M4, M5, M6) of radiusR= 11.7 pc. We find that star formation is highly efficient and becomes more so at a higher cloud mass and surface density. For M4, M5, and M6 with initial surface densities 2.325 × 101,2,3Mpc−2, after a free-fall time oftff= 6.7,2.1,0.67 Myr, we find that ∼30%, 40%, and 60% of the cloud mass has formed into stars, respectively. The end of simulation-integrated star formation efficiencies for M4, M5, and M6 areϵ = M/Mcloud = 36%, 65%, and 85%. Observations of nearby clusters similar in mass and size to M4 have instantaneous star formation efficiencies ofϵinst ≤ 30%, which is slightly lower than the integrated star formation efficiency of M4. The M5 and M6 models represent a different regime of cluster formation that is more appropriate for the conditions in starburst galaxies and gas-rich galaxies at high redshift, and that leads to a significantly higher efficiency of star formation. We argue that young massive clusters build up through short efficient bursts of star formation in regions that are sufficiently dense (Σ ≥ 102Mpc−2) and massive (Mcloud≥ 105M). In such environments, stellar feedback from winds and radiation is not strong enough to counteract the gravity from gas and stars until a majority of the gas has formed into stars. 
    more » « less