skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Interacting effects of fire and hydroclimate on oak and beech community prevalence in the southern Great Lakes region
Abstract Rising temperatures, increasing hydroclimate variability and intensifying disturbance regimes increase the risk of rapid ecosystem conversions. We can leverage multi‐proxy records of past ecosystem transformations to understand their causes and ecosystem vulnerability to rapid change.Prior to Euro‐American settlement, northern Indiana was a mosaic of prairie, oak‐dominated forests/woodlands and beech‐dominated hardwood forests. This heterogeneity, combined with well‐documented but poorly understood past beech population declines, make this region ideal for studying the drivers of ecosystem transformations.Here, we present a new record from Story Lake, IN, with proxies for vegetation composition (pollen), fire (charcoal) and beech intrinsic water use efficiency (δ13C of beech pollen; δ13Cbeech). Multiple proxies from the same core enable clear establishment of lead–lag relationships. Additionally, δ13Cbeechenables direct comparisons between beech population abundance and physiological responses to changing environments. We compare Story Lake to a nearby lake‐level reconstruction and to pollen records from nearby Pretty and Appleman Lakes and the distal Spicer Lake, to test hypotheses about synchrony and the spatial scale of governing processes.The 11.7 ka sediment record from Story Lake indicates multiple conversions between beech‐hardwood forest and oak forest/woodland. Beech pollen abundances rapidly increased between 7.5 and 7.1 ka, while oak declined. Oak abundances increased after 4.6 ka and remained high until 2.8 ka, indicating replacement of mesic forests by oak forest/woodland. At 2.8 ka, beech abundances rapidly increased, indicating mesic forest reestablishment. Beech and oak abundances correlate with charcoal accumulation rates but beech abundance is not correlated with δ13Cbeech.Fluctuations in beech abundances are synchronous among Story, Appleman and Pretty Lakes, but asynchronous between Story and Spicer Lakes, suggesting regulation by local‐scale vegetation‐fire‐climate feedbacks and secondarily by regional‐scale drivers.Holocene forest composition and fire dynamics appear to be closely co‐regulated and may be affected by local to regional climate variations. The importance of extrinsic drivers and positive/negative feedbacks changes over time, with higher ecoclimate sensitivity before 2.8 ka and greater resilience afterwards.Synthesis: Overall, oak‐ and beech‐dominated ecosystems were highly dynamic over the Holocene, with multiple ecosystem conversions driven by shifting interactions among vegetation, hydroclimate and fire regime.  more » « less
Award ID(s):
1855781 1855822 1856047
PAR ID:
10517967
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
British Ecological Society
Date Published:
Journal Name:
Journal of Ecology
Volume:
112
Issue:
5
ISSN:
0022-0477
Page Range / eLocation ID:
1101 to 1122
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. High resolution pollen analyses of sediment core LEDC10-1 from Lake Elsinore yield the first well-dated, terrestrial record of sub-centennial-scale ecologic change in coastal southern California between ~32 and 9 ka. In the Lake Elsinore watershed, the initial, mesic montane conifer forests dominated by Pinus, and Cupressaceae with trace amounts of Abies and Picea were replaced by a sequence of multiple, extended severe mega-droughts between ~27.5 and ~25.5 ka, in which halophytic and xerophytic herbs and shrubs occupied an ephemeral lake. This prolonged and extended dry interval, which corresponds with warm waters offshore, imply strengthening of the North Pacific High and persistent below-average winter precipitation. The subsequent, contrasting monotonic occurrence of montane conifers reflects little variation in cold, mesic climate until ~15 ka. Postglacial development of Quercus woodland and chaparral mark the return to more xeric, warmer conditions at this time. A brief reversal at ~13.1e~12.1 ka, as reflected by an expansion of Pinus, is correlative with the Younger Dryas and interrupts development of warm, postglacial climate. Subsequent gradual expansion of xeric vegetation post e Younger Dryas denotes the establishment of a winter hydroclimate regime in coastal southern California that is more similar to modern conditions. Pollen-based reconstructions of temperature and precipitation at Lake Elsinore are generally correlative with pollen-based paleoclimatic reconstructions and foraminifera based sea surface temperatures from Santa Barbara Basin in marine core ODP 893. The conspicuous absence of the ~27.5e~25.5 ka glacial “mega-drought” in the Santa Barbara Basin pollen record highlights the sensitivity of Lake Elsinore to hydroclimate change, and thus, the importance of this new record that indicates that mega-drought can occur during the full glacial when climatic boundary conditions and forcings differed substantially from the present. 
    more » « less
  2. 1. Wildfires strongly influence forest ecosystem processes, including carbon and nutrient cycling, and vegetation dynamics. As fire activity increases under changing climate conditions, the ecological and biogeochemical resilience of many forest ecosystems remains unknown. 2. To investigate the resilience of forest ecosystems to changing climate and wildfire activity over decades to millennia, we developed a 4800‐year high‐resolution lake‐sediment record from Silver Lake, Montana, USA (47.360° N, 115.566° W). Charcoal particles, pollen grains, element concentrations and stable isotopes of C and N serve as proxies of past changes in fire, vegetation and ecosystem processes such as nitrogen cycling and soil erosion, within a small subalpine forest watershed. A published lake‐level history from Silver Lake provides a local record of palaeohydrology. 3. A trend towards increased effective moisture over the late Holocene coincided with a distinct shift in the pollen assemblage c. 1900 yr BP, resulting from increased subalpine conifer abundance. Fire activity, inferred from peaks in macroscopic charcoal, decreased significantly after 1900 yr BP, from one fire event every 126 yr (83–184 yr, 95% CI) from 4800 to 1900 yr BP, to one event every 223 yr (175–280 yr) from 1900 yr BP to present. 4. Across the record, individual fire events were followed by two distinct decadal‐scale biogeochemical responses, reflecting differences in ecosystem impacts of fires on watershed processes. These distinct biogeochemical responses were interpreted as reflecting fire severity, highlighting (i) erosion, likely from large or high‐severity fires, and (ii) nutrient transfers and enhanced within‐lake productivity, likely from lower severity or patchier fires. Biogeochemical and vegetation proxies returned to pre‐fire values within decades regardless of the nature of fire effects. 5. Palaeorecords of fire and ecosystem responses provide a novel view revealing past variability in fire effects, analogous to spatial variability in fire severity observed within contemporary wildfires. Overall, the palaeorecord highlights ecosystem resilience to fire across long‐term variability in climate and fire activity. Higher fire frequencies in past millennia relative to the 20th and 21st century suggest that northern Rocky Mountain subalpine ecosystems could remain resilient to future increases in fire activity, provided continued ecosystem recovery within decades. 
    more » « less
  3. Summary Rising atmospheric carbon dioxide concentrations (CO2) and atmospheric nitrogen (N) deposition have contrasting effects on ectomycorrhizal (EM) and arbuscular mycorrhizal (AM) symbioses, potentially mediating forest responses to environmental change.In this study, we evaluated the cumulative effects of historical environmental change on N concentrations and δ15N values in AM plants, EM plants, EM fungi, and saprotrophic fungi using herbarium specimens collected in Minnesota, USA from 1871 to 2016. To better understand mycorrhizal mediation of foliar δ15N, we also analyzed a subset of previously published foliar δ15N values from across the United States to parse the effects of N deposition and CO2rise.Over the last century in Minnesota, N concentrations declined among all groups except saprotrophic fungi. δ15N also declined among all groups of plants and fungi; however, foliar δ15N declined less in EM plants than in AM plants. In the analysis of previously published foliar δ15N values, this slope difference between EM and AM plants was better explained by nitrogen deposition than by CO2rise.Mycorrhizal type did not explain trajectories of plant N concentrations. Instead, plants and EM fungi exhibited similar declines in N concentrations, consistent with declining forest N status despite moderate levels of N deposition. 
    more » « less
  4. Abstract We introduce a new “ecosystem‐scale” experiment at the Cedar Creek Ecosystem Science Reserve in central Minnesota, USA to test long‐term ecosystem consequences of tree diversity and composition. The experiment—the largest of its kind in North America—was designed to provide guidance on forest restoration efforts that will advance carbon sequestration goals and contribute to biodiversity conservation and sustainability.The new Forest and Biodiversity (FAB2) experiment uses native tree species in varying levels of species richness, phylogenetic diversity and functional diversity planted in 100 m2and 400 m2plots at 1 m spacing, appropriate for testing long‐term ecosystem consequences. FAB2 was designed and established in conjunction with a prior experiment (FAB1) in which the same set of 12 species was planted in 16 m2plots at 0.5 m spacing. Both are adjacent to the BioDIV prairie‐grassland diversity experiment, enabling comparative investigations of diversity and ecosystem function relationships between experimental grasslands and forests at different planting densities and plot sizes.Within the first 6 years, mortality in 400 m2monoculture plots was higher than in 100 m2plots. The highest mortality occurred inTilia americanaandAcer negundomonocultures, but mortality for both species decreased with increasing plot diversity. These results demonstrate the importance of forest diversity in reducing mortality in some species and point to potential mechanisms, including light and drought stress, that cause tree mortality in vulnerable monocultures. The experiment highlights challenges to maintaining monoculture and low‐diversity treatments in tree mixture experiments of large extent.FAB2 provides a long‐term platform to test the mechanisms and processes that contribute to forest stability and ecosystem productivity in changing environments. Its ecosystem‐scale design, and accompanying R package, are designed to discern species and lineage effects and multiple dimensions of diversity to inform restoration of ecosystem functions and services from forests. It also provides a platform for improving remote sensing approaches, including Uncrewed Aerial Vehicles (UAVs) equipped with LiDAR, multispectral and hyperspectral sensors, to complement ground‐based monitoring. We aim for the experiment to contribute to international efforts to monitor and manage forests in the face of global change. 
    more » « less
  5. Abstract Shrub encroachment is one of the primary threats to mesic grasslands around the world. This dramatic shift in plant cover has the potential to alter ecosystem‐scale water budgets and responses to novel rainfall regimes. Understanding divergent water‐use strategies among encroaching shrubs and the grasses they replace is critical for predicting shifts in ecosystem‐scale water dynamics as a result of shrub encroachment, particularly if drought events become more frequent and/or severe in the future.In this study, we assessed how water‐use traits of a rapidly encroaching clonal shrub (Cornus drummondii) and a dominant C4grass (Andropogon gerardii) impact responses to changes in water availability in tallgrass prairie. We assessed intra‐annual change in depth of water uptake, turgor loss point and stomatal regulation in each species. Sampling took place at Konza Prairie Biological Station (northeastern KS, USA) during the 2021 and 2022 growing seasons.Cornus drummondiishifted from shallow to deep soil water sources across the 2021 and 2022 growing seasons. This plasticity in depth of water uptake facilitated a ‘wasteful’ water‐use strategy inC. drummondii, where stomatal conductance and transpiration rates continued to increase even when no further gain in photosynthetic rate occurred.A. gerardiiphotosynthetic rates and stomatal conductance were more variable through time and were more responsive to changes in leaf water potential thanC. drummondii. However, intra‐annual adjustment of turgor loss point was more pronounced inC. drummondii(ΔπTLP = −0.48 MPa ± 0.15 SD) than inA. gerardii(ΔπTLP = −0.29 MPa ± 0.19 SD).Synthesis. These results suggest thatC. drummondiiis highly resilient to changes in water availability in surface soils and will likely remain unaffected by future droughts unless they are severe enough to reduce the availability of deep soil water. Given that clonal shrubs are key invaders of grasslands world‐wide, increased leaf‐level water loss is expected to accelerate ecosystem‐level drying as clonal shrub encroachment proceeds in mesic grasslands. 
    more » « less