skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Title: Purcell enhancement of a single T center in a silicon nanophotonic cavity
Optically addressable atomic defects in solids are promising building blocks for future quantum communication technologies. The silicon-on-insulator (SOI) platform is an ideal host for such defects as it benefits from technologically mature silicon photonics and electronics. The novel T center in silicon offers telecommunication O-band optical transitions as well as a doublet ground state spin manifold with a long coherence time, making it a prime candidate for building quantum repeater devices. However, T centers’ weak coherent zero phonon line (ZPL) emission rate stands as an obstacle to their use in quantum networking applications. Here, by integrating single T centers with a low-loss, small mode-volume photonic crystal cavity on SOI, we demonstrate cavity-enhanced fluorescence emission from a single T center with an enhancement factor up to F = 6.89. Leveraging nanophotonic circuits and an angle-polished fiber for light coupling, the system achieves efficient ZPL photon extraction reaching an average outcoupling rate of 73.3 kHz. Lastly, by solving the Lindblad master equation, we extract the T-center-cavity coupling parameters and elucidate the cavity quantum electrodynamics of the coupled system. This work represents a major step towards utilizing single T centers in silicon for quantum information processing and networking applications.  more » « less
Award ID(s):
2238298
PAR ID:
10518046
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
American Physical Society
Date Published:
Journal Name:
Bulletin of the American Physical Society
ISSN:
0003-0503
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Novel T centers in silicon hold great promise for quantum networking applications due to their telecom band optical transitions and the long-lived ground state electronic spins. An open challenge for advancing the T center platform is to enhance its weak and slow zero phonon line (ZPL) emission. In this work, by integrating single T centers with a low-loss, small mode-volume silicon photonic crystal cavity, we demonstrate an enhancement of the fluorescence decay rate by a factor ofF = 6.89. Efficient photon extraction enables the system to achieve an average ZPL photon outcoupling rate of 73.3 kHz under saturation, which is about two orders of magnitude larger than the previously reported value. The dynamics of the coupled system is well modeled by solving the Lindblad master equation. These results represent a significant step towards building efficient T center spin-photon interfaces for quantum information processing and networking applications.

     
    more » « less
  2. Siilicon is the most scalable optoelectronic material but has suffered from its inability to generate directly and efficiently classical or quantum light on-chip. Scaling and integration are the most fundamental challenges facing quantum science and technology. We report an all-silicon quantum light source based on a single atomic emissive center embedded in a silicon-based nanophotonic cavity. We observe a more than 30-fold enhancement of luminescence, a near-unity atom-cavity coupling efficiency, and an 8-fold acceleration of the emission from the all-silicon quantum emissive center. Our work opens immediate avenues for large-scale integrated cavity quantum electrodynamics and quantum light-matter interfaces with applications in quantum communication and networking, sensing, imaging, and computing.

     
    more » « less
  3. Silicon vacancy (VSi) centers in 4H-silicon carbide have emerged as a strong candidate for quantum networking applications due to their robust electronic and optical properties, including a long spin coherence lifetime and bright, stable emission. Here, we report the integration of VSi centers with a plasmonic nanocavity to Purcell enhance the emission, which is critical for scalable quantum networking. Employing a simple fabrication process, we demonstrate plasmonic cavities that support a nanoscale mode volume and exhibit an increase in the spontaneous emission rate with a measured Purcell factor of up to 48. In addition to investigating the optical resonance modes, we demonstrate an improvement in the optical stability of the spin-preserving resonant optical transitions relative to the radiation-limited value. The results highlight the potential of nanophotonic structures for advancing quantum networking technologies and emphasize the importance of optimizing emitter−cavity interactions for efficient quantum photonic applications. 
    more » « less
  4. Abstract

    Silicon carbide is among the leading quantum information material platforms due to the long spin coherence and single-photon emitting properties of its color center defects. Applications of silicon carbide in quantum networking, computing, and sensing rely on the efficient collection of color center emission into a single optical mode. Recent hardware development in this platform has focused on angle-etching processes that preserve emitter properties and produce triangularly shaped devices. However, little is known about the light propagation in this geometry. We explore the formation of photonic band gap in structures with a triangular cross-section, which can be used as a guiding principle in developing efficient quantum nanophotonic hardware in silicon carbide. Furthermore, we propose applications in three areas: the TE-pass filter, the TM-pass filter, and the highly reflective photonic crystal mirror, which can be utilized for efficient collection and propagating mode selection of light emission.

     
    more » « less
  5. Abstract Silicon carbide is evolving as a prominent solid-state platform for the realization of quantum information processing hardware. Angle-etched nanodevices are emerging as a solution to photonic integration in bulk substrates where color centers are best defined. We model triangular cross-section waveguides and photonic crystal cavities using Finite-Difference Time-Domain and Finite-Difference Eigensolver approaches. We analyze optimal color center positioning within the modes of these devices and provide estimates on achievable Purcell enhancement in nanocavities with applications in quantum communications. Using open quantum system modeling, we explore emitter-cavity interactions of multiple non-identical color centers coupled to both a single cavity and a photonic crystal molecule in SiC. We observe polariton and subradiant state formation in the cavity-protected regime of cavity quantum electrodynamics applicable in quantum simulation. 
    more » « less