Metric embeddings traditionally study how to map n items to a target metric space such that distance lengths are not heavily distorted. However, what if we are only interested in preserving the relative order of the distances, rather than their exact lengths? In this paper, we explore the fundamental question: given triplet comparisons of the form “item i is closer to item j than to item k,” can we find low-dimensional Euclidean representations for the n items that respect those distance comparisons? Such order-preserving embeddings naturally arise in important applications—such as recommendations, ranking, crowdsourcing, psychometrics, and nearest-neighbor search—and have been studied since the 1950s under the name of ordinal or non-metric embeddings. Our main results include: Nearly-Tight Bounds on Triplet Dimension: We introduce the concept of triplet dimension of a dataset and show, surprisingly, that in order for an ordinal embedding to be triplet-preserving, its dimension needs to grow as n^2 in the worst case. This is nearly optimal, as n−1 dimensions always suffice. Tradeoffs for Dimension vs (Ordinal) Relaxation: We relax the requirement that every triplet must be exactly preserved and present almost tight lower bounds for the maximum ratio between distances whose relative order was inverted by the embedding. This ratio is known as (ordinal) relaxation in the literature and serves as a counterpart to (metric) distortion. New Bounds on Terminal and Top-k-NNs Embeddings: Moving beyond triplets, we study two well-motivated scenarios where we care about preserving specific sets of distances (not necessarily triplets). The first scenario is Terminal Ordinal Embeddings where we aim to preserve relative distance orders to k given items (the “terminals”), and for that, we present matching upper and lower bounds. The second scenario is top-k-NNs Ordinal Embeddings, where for each item we aim to preserve the relative order of its k nearest neighbors, for which we present lower bounds. To the best of our knowledge, these are some of the first tradeoffs on triplet-preserving ordinal embeddings and the first study of Terminal and Top-k-NNs Ordinal Embeddings.
more »
« less
Fewer Triplets Than You Think: Novelty Error Converges Faster Than Triplet Violations in Ordinal Embeddings
A practical and well-studied method for computing the novelty of a design is to construct an ordinal embedding via a collection of pairwise comparisons between items (called triplets), and use distances within that embedding to compute which designs are farthest from the center. Unfortunately, ordinal embedding methods can require a large number of triplets before their primary error measure — the triplet violation error — converges. But if our goal is accurate novelty estimation, is it really necessary to fully minimize all triplet violations? Can we extract useful information regarding the novelty of all or some items using fewer triplets than classical convergence rates might imply? This paper addresses this question by studying the relationship between triplet violation error and novelty score error when using ordinal embeddings. Specifically, we compare how errors in embeddings produced by Generalized Non-Metric Dimensional Scaling (GNMDS) converge under different sampling methods, for different numbers of embedded items, sizes of latent spaces, and for the top K most novel designs. We find that estimating the novelty of a set of items via ordinal embedding can require significantly fewer human-provided triplets than is needed to converge the triplet error, and that this effect is modulated by the type of triplet sampling method (random versus uncertainty sampling). We also find that uncertainty sampling causes unique converge behavior in estimating most novel items compared to non-novel items. Our results imply that in certain situations one can use ordinal embedding techniques to estimate novelty error in fewer samples than is typically expected. Moreover, the convergence behavior of top K novel items motivates new potential triplet sampling methods that go beyond typical triplet reduction measures.
more »
« less
- Award ID(s):
- 2155072
- PAR ID:
- 10518117
- Publisher / Repository:
- American Society of Mechanical Engineers
- Date Published:
- ISBN:
- 978-0-7918-8734-9
- Format(s):
- Medium: X
- Location:
- Boston, Massachusetts, USA
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Personalized recommender systems play a crucial role in modern society, especially in e-commerce, news, and ads areas. Correctly evaluating and comparing candidate recommendation models is as essential as constructing ones. The common offline evaluation strategy is holding out some user-interacted items from training data and evaluating the performance of recommendation models based on how many items they can retrieve. Specifically, for any hold-out item or so-called target item for a user, the recommendation models try to predict the probability that the user would interact with the item and rank it among overall items, which is calledglobal evaluation. Intuitively, a good recommendation model would assign high probabilities to such hold-out/target items. Based on the specific ranks, some metrics likeRecall@KandNDCG@Kcan be calculated to further quantify the quality of the recommender model. Instead of ranking the target items among all items, Koren first proposed to rank them among a smallsampled set of items, then quantified the performance of the models, which is calledsampling evaluation. Ever since then, there has been a large amount of work adopting sampling evaluation due to its efficiency and frugality. In recent work, Rendle and Krichene argued that the sampling evaluation is “inconsistent” with respect to a global evaluation in terms of offline top-Kmetrics. In this work, we first investigate the “inconsistent” phenomenon by taking a glance at the connections between sampling evaluation and global evaluation. We reveal the approximately linear relationship between sampling with respect to its global counterpart in terms of the top-KRecall metric. Second, we propose a new statistical perspective of the sampling evaluation—to estimate the global rank distribution of the entire population. After the estimated rank distribution is obtained, the approximation of the global metric can be further derived. Third, we extend the work of Krichene and Rendle, directly optimizing the error with ground truth, providing not only a comprehensive empirical study but also a rigorous theoretical understanding of the proposed metric estimators. To address the “blind spot” issue, where accurately estimating metrics for small top-Kvalues in sampling evaluation is challenging, we propose a novel adaptive sampling method that generalizes the expectation-maximization algorithm to this setting. Last but not least, we also study the user sampling evaluation effect. This series of works outlines a clear roadmap for sampling evaluation and establishes a foundational theoretical framework. Extensive empirical studies validate the reliability of the sampling methods presented.more » « less
-
OpenReview (Ed.)We consider the distributionally robust optimization (DRO) problem with spectral risk-based uncertainty set and f-divergence penalty. This formulation includes common risk-sensitive learning objectives such as regularized condition value-at-risk (CVaR) and average top-k loss. We present Prospect, a stochastic gradient-based algorithm that only requires tuning a single learning rate hyperparameter, and prove that it enjoys linear convergence for smooth regularized losses. This contrasts with previous algorithms that either require tuning multiple hyperparameters or potentially fail to converge due to biased gradient estimates or inadequate regularization. Empirically, we show that Prospect can converge 2-3× faster than baselines such as stochastic gradient and stochastic saddle-point methods on distribution shift and fairness benchmarks spanning tabular, vision, and language domains.more » « less
-
We propose a cross-modality manifold alignment procedure that leverages triplet loss to jointly learn consistent, multi-modal embeddings of language-based concepts of real-world items. Our approach learns these embeddings by sampling triples of anchor, positive, and negative data points from RGB-depth images and their natural language descriptions. We show that our approach can benefit from, but does not require, post-processing steps such as Procrustes analysis, in contrast to some of our baselines which require it for reasonable performance. We demonstrate the effectiveness of our approach on two datasets commonly used to develop robotic-based grounded language learning systems, where our approach outperforms four baselines, including a state-of-the-art approach, across five evaluation metrics.more » « less
-
NA (Ed.)This study proposes the novel formulation of measuring emotional similarity between speech recordings. This formulation explores the ordinal nature of emotions by comparing emotional similarities instead of predicting an emotional attribute, or recognizing an emotional category. The proposed task determines which of two alternative samples has the most similar emotional content to the emotion of a given anchor. This task raises some interesting questions. Which is the emotional descriptor that provide the most suitable space to assess emotional similarities? Can deep neural networks (DNNs) learn representations to robustly quantify emotional similarities? We address these questions by exploring alternative emotional spaces created with attribute-based descriptors and categorical emotions. We create the representation using a DNN trained with the triplet loss function, which relies on triplets formed with an anchor, a positive example, and a negative example. We select a positive sample that has similar emotion content to the anchor, and a negative sample that has dissimilar emotion to the anchor. The task of our DNN is to identify the positive sample. The experimental evaluations demonstrate that we can learn a meaningful embedding to assess emotional similarities, achieving higher performance than human evaluators asked to complete the same task.more » « less