Title: Technical note: Isolating methane emissions from animal feeding operations in an interfering location
Abstract. Agricultural emissions, including those from concentrated animal feeding operations (CAFOs) for beef and dairy cattle, make up a large portion of the United States' total greenhouse gas (GHG) emissions. However, many CAFOs reside in areas where methane (CH4) from oil and natural gas (ONG) complicates the quantification of CAFO emissions. Traditional approaches to quantify emissions in such regions often relied on inventory subtraction of other known sources. We compare the results of two approaches to attribute the CAFO CH4 emission rate from the total CH4 emission rate derived from an aircraft mass balance technique. These methods make use of the mixing ratio data of CH4, ethane (C2H6), and ammonia (NH3) that were collected simultaneously in-flight downwind of CAFOs in northeastern Colorado. The first approach, the subtraction method (SM), is similar to inventory subtraction, except the amount to be removed is derived from the observed C2H6 to CH4 ratio rather than an inventory estimate. The results from this approach showed high uncertainty, primarily due to how error propagates through subtraction. Alternatively, multivariate regression (MVR) can be used to estimate CAFO CH4 emissions using the NH3 emission rate and an NH3 to CH4 ratio. These results showed significantly less uncertainty. We identified criteria to determine the best attribution method; these criteria can support attribution in other regions. The final emission estimates for the CAFOs presented here were 13 ± 3 g of CH4 per head per hour and 13 ± 2 g of NH3 per head per hour. These estimates are higher than the inventory of the US Environmental Protection Agency (EPA) and previous studies highlighting the need for more measurements of CH4 and NH3 emission rates. more »« less
Stoy, Paul C.; Cook, Adam A.; Dore, John E.; Kljun, Natascha; Kleindl, William; Brookshire, E. N.; Gerken, Tobias
(, Biogeosciences)
null
(Ed.)
Abstract. American bison (Bison bison L.) have recovered from the brink ofextinction over the past century. Bison reintroduction creates multipleenvironmental benefits, but impacts on greenhouse gas emissions are poorlyunderstood. Bison are thought to have produced some 2 Tg yr−1 of theestimated 9–15 Tg yr−1 of pre-industrial enteric methane emissions,but few measurements have been made due to their mobile grazing habits andsafety issues associated with measuring non-domesticated animals. Here, wemeasure methane and carbon dioxide fluxes from a bison herd on an enclosedpasture during daytime periods in winter using eddy covariance. Methaneemissions from the study area were negligible in the absence of bison(mean ± standard deviation = −0.0009 ± 0.008 µmol m−2 s−1) and were significantly greater than zero,0.048 ± 0.082 µmol m−2 s−1, with a positively skeweddistribution, when bison were present. We coupled bison location estimatesfrom automated camera images with two independent flux footprint models tocalculate a mean per-animal methane efflux of 58.5 µmol s−1 per bison, similar to eddy covariance measurements ofmethane efflux from a cattle feedlot during winter. When we sum theobservations over time with conservative uncertainty estimates we arrive at81 g CH4 per bison d−1 with 95 % confidence intervalsbetween 54 and 109 g CH4 per bison d−1. Uncertainty wasdominated by bison location estimates (46 % of the total uncertainty),then the flux footprint model (33 %) and the eddy covariance measurements(21 %), suggesting that making higher-resolution animal location estimatesis a logical starting point for decreasing total uncertainty. Annualmeasurements are ultimately necessary to determine the full greenhouse gasburden of bison grazing systems. Our observations highlight the need tocompare greenhouse gas emissions from different ruminant grazing systems anddemonstrate the potential for using eddy covariance to measure methaneefflux from non-domesticated animals.
Omara, Mark; Himmelberger, Anthony; MacKay, Katlyn; Williams, James P; Benmergui, Joshua; Sargent, Maryann; Wofsy, Steven C; Gautam, Ritesh
(, Earth System Science Data)
Abstract. Accurate and comprehensive quantification of oil and gas methane emissions is pivotal in informing effective methane mitigation policies while also supporting the assessment and tracking of progress towards emissions reduction targets set by governments and industry. While national bottom-up source-level inventories are useful for understanding the sources of methane emissions, they are often unrepresentative across spatial scales, and their reliance on generic emission factors produces underestimations when compared with measurement-based inventories. Here, we compile and analyze previously reported ground-based facility-level methane emissions measurements (n=1540) in the major US oil- and gas-producing basins and develop representative methane emission profiles for key facility categories in the US oil and gas supply chain, including well sites, natural-gas compressor stations, processing plants, crude-oil refineries, and pipelines. We then integrate these emissions data with comprehensive spatial data on national oil and gas activity to estimate each facility's mean total methane emissions and uncertainties for the year 2021, from which we develop a mean estimate of annual national methane emissions resolved at 0.1° × 0.1° spatial scales (∼ 10 km × 10 km). From this measurement-based methane emissions inventory (EI-ME), we estimate total US national oil and gas methane emissions of approximately 16 Tg (95 % confidence interval of 14–18 Tg) in 2021, which is ∼ 2 times greater than the EPA Greenhouse Gas Inventory. Our estimate represents a mean gas-production-normalized methane loss rate of 2.6 %, consistent with recent satellite-based estimates. We find significant variability in both the magnitude and spatial distribution of basin-level methane emissions, ranging from production-normalized methane loss rates of < 1 % in the gas-dominant Appalachian and Haynesville regions to > 3 %–6 % in oil-dominant basins, including the Permian, Bakken, and the Uinta. Additionally, we present and compare novel comprehensive wide-area airborne remote-sensing data and results for total area methane emissions and the relative contributions of diffuse and concentrated methane point sources as quantified using MethaneAIR in 2021. The MethaneAIR assessment showed reasonable agreement with independent regional methane quantification results in sub-regions of the Permian and Uinta basins and indicated that diffuse area sources accounted for the majority of the total oil and gas emissions in these two regions. Our assessment offers key insights into plausible underlying drivers of basin-to-basin variabilities in oil and gas methane emissions, emphasizing the importance of integrating measurement-based data when developing high-resolution spatially explicit methane inventories in support of accurate methane assessment, attribution, and mitigation. The high-resolution spatially explicit EI-ME inventory is publicly available at https://doi.org/10.5281/zenodo.10734299 (Omara, 2024).
Hajny, K D; Kaeser, R; Starn, T K; Stirm, B H; Brockway, N; Peterson, P K; Bigge, K; Simpson, W R; Pratt, K A; Fuentes, J D; et al
(, Journal of Geophysical Research: Atmospheres)
Abstract Oil and gas production regions are significant sources of greenhouse gases and reactive pollutants such as nitrogen oxides (NOx) and volatile organic compounds. Research has also shown that methane (CH4) emissions reported to the Environmental Protection Agency's (EPA) Greenhouse Gas Reporting Program (GHGRP) are generally underestimated. The Arctic accounted for 5.5% of global oil and gas production in 2022 but is estimated to contain significant undiscovered resources. The emitted NOxand volatile organic compounds can impact the composition and chemistry of the Arctic atmosphere. The Prudhoe Bay Oil Field in Alaska is one of the 10 largest oil fields in the US and has been approved for significant development expansion. However, only one recent study has reported measurements of its greenhouse gas emissions. We estimate the emission rates for carbon dioxide (CO2), CH4, and NOxfrom the Prudhoe Bay Oil Field during the spring of 2022 using airborne mass balance methods and emission ratios. We also discuss emissions per energy produced and show an increase over time, with values higher than the national average for oil and gas producing regions, though within uncertainties. Our estimates are lower than the NOxemission estimate reported in the National Emissions Inventory (NEI), as seen in other oil and gas studies, but fall within the uncertainty range of the greenhouse gases reported in the GHGRP. This work provides a valuable snapshot of emissions before further expansion of extraction activities.
Saunois, Marielle; Martinez, Adrien; Poulter, Benjamin; Zhang, Zhen; Raymond, Peter; Regnier, Pierre; Canadell, Joseph G; Jackson, Robert B; Patra, Prabir K; Bousquet, Philippe; et al
(, Copernicus)
Abstract. Understanding and quantifying the global methane (CH4) budget is important for assessing realistic pathways to mitigate climate change. Emissions and atmospheric concentrations of CH4 continue to increase, maintaining CH4 as the second most important human-influenced greenhouse gas in terms of climate forcing after carbon dioxide (CO2). The relative importance of CH4 compared to CO2 for temperature change is related to its shorter atmospheric lifetime, stronger radiative effect, and acceleration in atmospheric growth rate over the past decade, the causes of which are still debated. Two major challenges in reducing uncertainties in the factors explaining the well-observed atmospheric growth rate arise from diverse, geographically overlapping CH4 sources and from the uncertain magnitude and temporal change in the destruction of CH4 by short-lived and highly variable hydroxyl radicals (OH). To address these challenges, we have established a consortium of multi-disciplinary scientists under the umbrella of the Global Carbon Project to improve, synthesise and update the global CH4 budget regularly and to stimulate new research on the methane cycle. Following Saunois et al. (2016, 2020), we present here the third version of the living review paper dedicated to the decadal CH4 budget, integrating results of top-down CH4 emission estimates (based on in-situ and greenhouse gas observing satellite (GOSAT) atmospheric observations and an ensemble of atmospheric inverse-model results) and bottom-up estimates (based on process-based models for estimating land-surface emissions and atmospheric chemistry, inventories of anthropogenic emissions, and data-driven extrapolations). We present a budget for the most recent 2010–2019 calendar decade (the latest period for which full datasets are available), for the previous decade of 2000–2009 and for the year 2020. The revision of the bottom-up budget in this edition benefits from important progress in estimating inland freshwater emissions, with better accounting of emissions from lakes and ponds, reservoirs, and streams and rivers. This budget also reduces double accounting across freshwater and wetland emissions and, for the first time, includes an estimate of the potential double accounting that still exists (average of 23 Tg CH4 yr-1). Bottom-up approaches show that the combined wetland and inland freshwater emissions average 248 [159–369] Tg CH4 yr-1 for the 2010–2019 decade. Natural fluxes are perturbed by human activities through climate, eutrophication, and land use. In this budget, we also estimate, for the first time, this anthropogenic component contributing to wetland and inland freshwater emissions. Newly available gridded products also allowed us to derive an almost complete latitudinal and regional budget based on bottom-up approaches. For the 2010–2019 decade, global CH4 emissions are estimated by atmospheric inversions (top-down) to be 575 Tg CH4 yr-1 (range 553–586, corresponding to the minimum and maximum estimates of the model ensemble). Of this amount, 369 Tg CH4 yr-1 or ~65 % are attributed to direct anthropogenic sources in the fossil, agriculture and waste and anthropogenic biomass burning (range 350–391 Tg CH4 yr-1 or 63–68 %). For the 2000–2009 period, the atmospheric inversions give a slightly lower total emission than for 2010–2019, by 32 Tg CH4 yr-1 (range 9–40). Since 2012, global direct anthropogenic CH4 emission trends have been tracking scenarios that assume no or minimal climate mitigation policies proposed by the Intergovernmental Panel on Climate Change (shared socio-economic pathways SSP5 and SSP3). Bottom-up methods suggest 16 % (94 Tg CH4 yr-1) larger global emissions (669 Tg CH4 yr-1, range 512–849) than top-down inversion methods for the 2010–2019 period. The discrepancy between the bottom-up and the top-down budgets has been greatly reduced compared to the previous differences (167 and 156 Tg CH4 yr-1 in Saunois et al. (2016, 2020), respectively), and for the first time uncertainty in bottom-up and top-down budgets overlap. The latitudinal distribution from atmospheric inversion-based emissions indicates a predominance of tropical and southern hemisphere emissions (~65 % of the global budget, <30° N) compared to mid (30° N–60° N, ~30 % of emissions) and high-northern latitudes (60° N–90° N, ~4 % of global emissions). This latitudinal distribution is similar in the bottom-up budget though the bottom-up budget estimates slightly larger contributions for the mid and high-northern latitudes, and slightly smaller contributions from the tropics and southern hemisphere than the inversions. Although differences have been reduced between inversions and bottom-up, the most important source of uncertainty in the global CH4 budget is still attributable to natural emissions, especially those from wetlands and inland freshwaters. We identify five major priorities for improving the CH4 budget: i) producing a global, high-resolution map of water-saturated soils and inundated areas emitting CH4 based on a robust classification of different types of emitting ecosystems; ii) further development of process-based models for inland-water emissions; iii) intensification of CH4 observations at local (e.g., FLUXNET-CH4 measurements, urban-scale monitoring, satellite imagery with pointing capabilities) to regional scales (surface networks and global remote sensing measurements from satellites) to constrain both bottom-up models and atmospheric inversions; iv) improvements of transport models and the representation of photochemical sinks in top-down inversions, and v) integration of 3D variational inversion systems using isotopic and/or co-emitted species such as ethane as well as information in the bottom-up inventories on anthropogenic super-emitters detected by remote sensing (mainly oil and gas sector but also coal, agriculture and landfills) to improve source partitioning. The data presented here can be downloaded from https://doi.org/10.18160/GKQ9-2RHT (Martinez et al., 2024).
Shanbogue, Santosh; Dijoud, Raphael; Pavan, Colin; Rao, Sankarsh R; Gomez_del_Campo, Felipe; Guerra-Garcia, Carmen; Ghoniem, Ahmed
(, American Institute of Aeronautics and Astronautics)
In this paper we explore the effects of nanosecond repetitively pulsed discharges (NRPD) on combustion instabilities and NOx emissions of CH4/NH3 flames, in a swirl-stabilized, 6 kW combustor. The combustor has a large dump plane ratio resulting in a turbulent flame with a single compact macrostructure across all operating conditions. Discharges are setup with a central pin-to-cylindrical-wall type electrode configuration with a discharge gap of 4.55 mm at the dump plane. For pure methane, instabilities occur at various frequencies and amplitudes, up to 1000 Pa. NPRD actuation was successful in suppressing instabilities across all conditions, with best reduction being as much as 23 dB. The discharge voltages ranged from 6-9 kV at a pulse rate of 9 kHz, equivalent to 5-12 mJ/pulse energies and plasma powers less than 99W. For pure CH4 flames, the NRPD actuation increased NOx emissions, but for high NH3/CH4 blends, the NRPD actuation reduced NOx emissions.
McCabe, Megan E, Pollack, Ilana B, Fischer, Emily V, Steinmann, Kathryn M, and Caulton, Dana R. Technical note: Isolating methane emissions from animal feeding operations in an interfering location. Retrieved from https://par.nsf.gov/biblio/10518354. Atmospheric Chemistry and Physics 23.13 Web. doi:10.5194/acp-23-7479-2023.
McCabe, Megan E, Pollack, Ilana B, Fischer, Emily V, Steinmann, Kathryn M, & Caulton, Dana R. Technical note: Isolating methane emissions from animal feeding operations in an interfering location. Atmospheric Chemistry and Physics, 23 (13). Retrieved from https://par.nsf.gov/biblio/10518354. https://doi.org/10.5194/acp-23-7479-2023
McCabe, Megan E, Pollack, Ilana B, Fischer, Emily V, Steinmann, Kathryn M, and Caulton, Dana R.
"Technical note: Isolating methane emissions from animal feeding operations in an interfering location". Atmospheric Chemistry and Physics 23 (13). Country unknown/Code not available: Atmospheric Chemistry and Physics. https://doi.org/10.5194/acp-23-7479-2023.https://par.nsf.gov/biblio/10518354.
@article{osti_10518354,
place = {Country unknown/Code not available},
title = {Technical note: Isolating methane emissions from animal feeding operations in an interfering location},
url = {https://par.nsf.gov/biblio/10518354},
DOI = {10.5194/acp-23-7479-2023},
abstractNote = {Abstract. Agricultural emissions, including those from concentrated animal feeding operations (CAFOs) for beef and dairy cattle, make up a large portion of the United States' total greenhouse gas (GHG) emissions. However, many CAFOs reside in areas where methane (CH4) from oil and natural gas (ONG) complicates the quantification of CAFO emissions. Traditional approaches to quantify emissions in such regions often relied on inventory subtraction of other known sources. We compare the results of two approaches to attribute the CAFO CH4 emission rate from the total CH4 emission rate derived from an aircraft mass balance technique. These methods make use of the mixing ratio data of CH4, ethane (C2H6), and ammonia (NH3) that were collected simultaneously in-flight downwind of CAFOs in northeastern Colorado. The first approach, the subtraction method (SM), is similar to inventory subtraction, except the amount to be removed is derived from the observed C2H6 to CH4 ratio rather than an inventory estimate. The results from this approach showed high uncertainty, primarily due to how error propagates through subtraction. Alternatively, multivariate regression (MVR) can be used to estimate CAFO CH4 emissions using the NH3 emission rate and an NH3 to CH4 ratio. These results showed significantly less uncertainty. We identified criteria to determine the best attribution method; these criteria can support attribution in other regions. The final emission estimates for the CAFOs presented here were 13 ± 3 g of CH4 per head per hour and 13 ± 2 g of NH3 per head per hour. These estimates are higher than the inventory of the US Environmental Protection Agency (EPA) and previous studies highlighting the need for more measurements of CH4 and NH3 emission rates.},
journal = {Atmospheric Chemistry and Physics},
volume = {23},
number = {13},
publisher = {Atmospheric Chemistry and Physics},
author = {McCabe, Megan E and Pollack, Ilana B and Fischer, Emily V and Steinmann, Kathryn M and Caulton, Dana R},
editor = {Browne, Eleanor}
}
Warning: Leaving National Science Foundation Website
You are now leaving the National Science Foundation website to go to a non-government website.
Website:
NSF takes no responsibility for and exercises no control over the views expressed or the accuracy of
the information contained on this site. Also be aware that NSF's privacy policy does not apply to this site.