Abstract Grain force‐balance models utilize grain protrusion and in‐situ resistance force data to evaluate the likely distributions of gravel‐bed sediment entrainment thresholds, specifically dimensionless critical shear stress (τ*c). These methods can give insight into the spatial variability of particle mobilities both within a channel, and between different gravel‐beds, but are yet to be evaluated across multiple sites with varying texture and fabric. We evaluate two published force‐balance approaches: (a) a Monte Carlo style sampling approach using grain size and topography distributions from field measurements; and (b) an automated point cloud segmentation and analysis approach with an updated set of force‐balance equations, Pro+. We compare the workflows, assumptions and inputs for each approach, apply them to an extensive UK‐wide data set comprising 45 upland riverbeds, and evaluate the estimatedτ*cdistributions. We find that mobility thresholds estimated from both methods are variable, with medianτ*cranging from 0.05 to 0.15, and are consistent with published values of approximately 0.02–0.1. Uncertainties in grain sampling strategy or point cloud segmentation quality lead to markedly different grain size distributions between approaches, but their resulting influences onτ*cdistributions are small relative to the range of estimatedτ*c. Sensitivity analyses onτ*cdistributions for grain‐size fractions also show that bed mobilities are sensitive to the roughness height of the velocity profile. We highlight uncertainties associated with these approaches, suggest areas for further targeted comparisons between methods, and provide guidance for the application of grain force‐balance models for estimating entrainment thresholds and bed stability in gravel‐bed rivers.
more »
« less
Pro+: Automated protrusion and critical shear stress estimates from 3D point clouds of gravel beds
Abstract The dimensionless critical shear stress (τ*c) needed for the onset of sediment motion is important for a range of studies from river restoration projects to landscape evolution calculations. Many studies simply assume aτ*cvalue within the large range of scatter observed in gravel‐bedded rivers because direct field estimates are difficult to obtain. Informed choices of reach‐scaleτ*cvalues could instead be obtained from force balance calculations that include particle‐scale bed structure and flow conditions. Particle‐scale bed structure is also difficult to measure, precluding wide adoption of such force‐balanceτ*cvalues. Recent studies have demonstrated that bed grain size distributions (GSD) can be determined from detailed point clouds (e.g. using G3Point open‐source software). We build on these point cloud methods to introduce Pro+, software that estimates particle‐scale protrusion distributions andτ*cfor each grain size and for the entire bed using a force‐balance model. We validated G3Point and Pro+ using two laboratory flume experiments with different grain size distributions and bed topographies. Commonly used definitions of protrusion may not produce representativeτ*cdistributions, and Pro+ includes new protrusion definitions to better include flow and bed structure influences on particle mobility. The combined G3Point/Pro+ provided accurate grain size, protrusion andτ*cdistributions with simple GSD calibration. The largest source of error in protrusion andτ*cdistributions were from incorrect grain boundaries and grain locations in G3Point, and calibration of grain software beyond comparing GSD is likely needed. Pro+ can be coupled with grain identifying software and relatively easily obtainable data to provide informed estimates ofτ*c. These could replace arbitrary choices ofτ*cand potentially improve channel stability and sediment transport estimates.
more »
« less
- Award ID(s):
- 1921790
- PAR ID:
- 10518527
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Earth Surface Processes and Landforms
- Volume:
- 49
- Issue:
- 7
- ISSN:
- 0197-9337
- Page Range / eLocation ID:
- 2155 to 2170
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Steep, boulder bed streams often contain sediment patches, which are areas of the bed with relatively well‐defined boundaries that are occupied by distinct grain size distributions (GSD). In sediment mixtures, the underlying GSD affects the critical Shields stress for a given grain size, which is commonly predicted using hiding functions. Hiding functions may vary with reach‐wide bed GSD, but the effect of local GSD on relative sediment mobility between sediment patches is poorly understood. We explore the effects of patch‐scale GSD on sediment mobility using tracer particles combined with local shear stresses to develop hiding functions for different patch classes within a steep stream. Hiding functions for all tested patch classes were similar, which indicates that the same hiding function can be used for different patches. However, the critical Shields stress for a given grain size generally decreased with lower patch median grain size (D50) suggesting that patches control the relative mobility of each size through both the underlying GSD and local shear stresses. The effects of the underlying GSD partly depend on grain protrusion, which we measured for all grain sizes present on each patch class. Protrusion was generally greater for larger grains regardless of patch class, but for a given grain size, protrusion was increased with smaller patchD50. For a given grain size, higher protrusion results in greater applied fluid forces and reduced resisting forces to partly explain our lower critical Shields stresses in finer patches. Patches therefore can importantly modulate relative sediment mobility through bed structure and may need to be included in reach‐scale sediment transport and channel stability estimates.more » « less
-
Abstract Understanding when gravel moves in river beds is essential for a range of different applications but is still surprisingly hard to predict. Here we consider how our ability to predict critical shear stress (τc) is being improved by recent advances in two areas: (1) identifying the onset of bedload transport; and (2) quantifying grain‐scale gravel bed structure. This paper addresses these areas through both an in‐depth review and a comparison of new datasets of gravel structure collected using three different methods. We focus on advances in these two areas because of the need to understand how the conditions for sediment entrainment vary spatially and temporally, and because spatial and temporal changes in grain‐scale structure are likely to be a major driver of changes inτc. We use data collected from a small gravel‐bed stream using direct field‐based measurements, terrestrial laser scanning (TLS) and computed tomography (CT) scanning, which is the first time that these methods have been directly compared. Using each method, we measure structure‐relevant metrics including grain size distribution, grain protrusion and fine matrix content. We find that all three methods produce consistent measures of grain size, but that there is less agreement between measurements of grain protrusion and fine matrix content.more » « less
-
The effect of an electric field on local domain structure near a 24° tilt grain boundary in a 200 nm-thick Pb(Zr0.2Ti0.8)O3bi-crystal ferroelectric film was probed using synchrotron nanodiffraction. The bi-crystal film was grown epitaxially on SrRuO3-coated (001) SrTiO324° tilt bi-crystal substrates. From the nanodiffraction data, real-space maps of the ferroelectric domain structure around the grain boundary prior to and during application of a 200 kV cm−1electric field were reconstructed. In the vicinity of the tilt grain boundary, the distributions of densities ofc-type tetragonal domains with thecaxis aligned with the film normal were calculated on the basis of diffracted intensity ratios ofc- anda-type domains and reference powder diffraction data. Diffracted intensity was averaged along the grain boundary, and it was shown that the density ofc-type tetragonal domains dropped to ∼50% of that of the bulk of the film over a range ±150 nm from the grain boundary. This work complements previous results acquired by band excitation piezoresponse force microscopy, suggesting that reduced nonlinear piezoelectric response around grain boundaries may be related to the change in domain structure, as well as to the possibility of increased pinning of domain wall motion. The implications of the results and analysis in terms of understanding the role of grain boundaries in affecting the nonlinear piezoelectric and dielectric responses of ferroelectric materials are discussed.more » « less
-
Abstract The dust grain size distribution (GSD) likely varies significantly across star-forming environments in the Universe, but its impact on star formation remains unclear. This ambiguity arises because the GSD interacts nonlinearly with processes like heating, cooling, radiation, and chemistry, which have competing effects and varying environmental dependencies. Processes such as grain coagulation, expected to be efficient in dense star-forming regions, reduce the abundance of small grains and increase that of larger grains. Motivated by this, we investigate the effects of similar GSD variations on the thermochemistry and evolution of giant molecular clouds (GMCs) using magnetohydrodynamic simulations spanning a range of cloud masses and grain sizes, which explicitly incorporate the dynamics of dust grains within the full-physics framework of the STARFORGE project. We find that grain size variations significantly alter GMC thermochemistry: the leading-order effect is that larger grains, under fixed dust mass, GSD dynamic range, and dust-to-gas ratio, result in lower dust opacities. This reduced opacity permits interstellar radiation field and internal radiation photons to penetrate more deeply. This leads to rapid gas heating and inhibited star formation. Star formation efficiency is highly sensitive to grain size, with an order-of-magnitude reduction when grain size dynamic range increases from 10−3–0.1μm to 0.1–10μm. Additionally, warmer gas suppresses low-mass star formation, and decreased opacities result in a greater proportion of gas in diffuse ionized structures.more » « less
An official website of the United States government

