skip to main content


Title: Effects of two common antibiotics on the skin microbiome of ornamental reef fishes: Implications for manipulative experiments in microbial dynamics
Abstract

An understanding of the mechanistic drivers of animal‐microbial symbiosis and associations generally requires experiments that manipulate specific symbionts or microbial communities. As part of an ongoing study of the mechanisms that drive microbial communities in coral reef fishes, and specifically the role of cleanerfish in microbial transmission, we tested the effects of the commonly used antibiotics Enrofloxacin and Nitrofurazone on the skin microbiome of three ornamental reef fish species: the four‐eyed butterflyfish,Chaetodon capistratus(Chaetodontidae), the cleanerfish neon gobyElacatinus oceanops(Gobiidae) and the beaugregory damselfishStegastes leucostictus(Pomacentridae). Our main aim was to characterize dysbiosis prompted by the delivery of the two antibiotics and understand whether both could be used to establish good starting points for microbial transmission experiments. We bathed the fish in antibiotic (or no exposure in the controls), sampled the skin microbiota via swabbing at zero (before treatment) and 3 and 7 days during the treatments, and examined the microbial community using a 16S rRNA gene sequencing approach. Nitrofurazone reduced skin‐associated microbial diversity in all species, whereas the same effect for Enrofloxacin was only seen inS. leucostictus. Although each antibiotic had its own, unique impact in microbial community, all treatments showed positive and negative shifts in the most abundant microbial taxa over time. Moreover, soon after the delivery of both antibiotics, increases in the abundance of opportunistic bacteria or potential pathogens, such asAlteromonasandVibrio, were observed. Although both antibiotics are effective, Nitrofurazone more successfully reduces microbial diversity and therefore may be more ideal for experiments seeking to disrupt fish microbiomes.

 
more » « less
PAR ID:
10518591
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Aquaculture, Fish and Fisheries
Volume:
4
Issue:
3
ISSN:
2693-8847
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Suspension‐feeding bivalves are critical members of aquatic ecosystems worldwide, which is why research into their host‐associated microbiota is growing. Experiments that artificially diminish the native microbial communities of bivalvesin vivowill be increasingly necessary to evaluate the functional role of microbes within their hosts. Previous methods to manipulate the microbiome of bivalves lack standardization and, often, verification of successful disturbance. The goal of this study was to evaluate antibiotic administration as a method for perturbing the gut microbiome of bivalves in two separate, but related, experiments. In the first, a mixture of antibiotics was delivered to eastern oysters for 4 days to probe effects on gut microbial carbon usage, diversity, and taxonomic composition. In the second, the same antibiotic mixture was administered to blue mussels for 21 days to probe effects on microbial abundance, diversity, and taxonomic composition. In both experiments, animals were administered antibiotics in isolation, and stringent sterilization methods were employed, which included sterilized seawater and microalgal food. The results of the oyster experiment revealed that antibiotics substantially reduced microbial carbon usage and perturbed community composition. In the mussel experiment, antibiotics lowered microbial abundance and species richness and significantly altered community composition. Taken together, results from the two experiments demonstrate that antibiotics can be used to effectively alter the function and composition of the gut microbial community of bivalves. Future research that aims to perturb the microbiomes of suspension‐feeding animals should incorporate aspects similar to the protocols described herein. Additionally, future studies must include verification, ideally high‐throughput DNA sequencing coupled with microbial quantification, that the antibiotic perturbation was successful.

     
    more » « less
  2. Abstract Background

    Antibiotics alter the diversity, structure, and dynamics of host-associated microbial consortia, including via development of antibiotic resistance; however, patterns of recovery from microbial imbalances and methods to mitigate associated negative effects remain poorly understood, particularly outside of human-clinical and model-rodent studies that focus on outcome over process. To improve conceptual understanding of host-microbe symbiosis in more naturalistic contexts, we applied an ecological framework to a non-traditional, strepsirrhine primate model via long-term, multi-faceted study of microbial community structure before, during, and following two experimental manipulations. Specifically, we administered a broad-spectrum antibiotic, either alone or with subsequent fecal transfaunation, to healthy, male ring-tailed lemurs (Lemur catta), then used 16S rRNA and shotgun metagenomic sequencing to longitudinally track the diversity, composition, associations, and resistomes of their gut microbiota both within and across baseline, treatment, and recovery phases.

    Results

    Antibiotic treatment resulted in a drastic decline in microbial diversity and a dramatic alteration in community composition. Whereas microbial diversity recovered rapidly regardless of experimental group, patterns of microbial community composition reflected long-term instability following treatment with antibiotics alone, a pattern that was attenuated by fecal transfaunation. Covariation analysis revealed that certain taxa dominated bacterial associations, representing potential keystone species in lemur gut microbiota. Antibiotic resistance genes, which were universally present, including in lemurs that had never been administered antibiotics, varied across individuals and treatment groups.

    Conclusions

    Long-term, integrated study post antibiotic-induced microbial imbalance revealed differential, metric-dependent evidence of recovery, with beneficial effects of fecal transfaunation on recovering community composition, and potentially negative consequences to lemur resistomes. Beyond providing new perspectives on the dynamics that govern host-associated communities, particularly in the Anthropocene era, our holistic study in an endangered species is a first step in addressing the recent, interdisciplinary calls for greater integration of microbiome science into animal care and conservation.

     
    more » « less
  3. Abstract

    Antibiotic treatment significantly impacts the human gut microbiota, but quantitative understanding of how antibiotics affect community diversity is lacking. Here, we build on classical ecological models of resource competition to investigate community responses to species-specific death rates, as induced by antibiotic activity or other growth-inhibiting factors such as bacteriophages. Our analyses highlight the complex dependence of species coexistence that can arise from the interplay of resource competition and antibiotic activity, independent of other biological mechanisms. In particular, we identify resource competition structures that cause richness to depend on the order of sequential application of antibiotics (non-transitivity), and the emergence of synergistic and antagonistic effects under simultaneous application of multiple antibiotics (non-additivity). These complex behaviors can be prevalent, especially when generalist consumers are targeted. Communities can be prone to either synergism or antagonism, but typically not both, and antagonism is more common. Furthermore, we identify a striking overlap in competition structures that lead to non-transitivity during antibiotic sequences and those that lead to non-additivity during antibiotic combination. In sum, our results establish a broadly applicable framework for predicting microbial community dynamics under deleterious perturbations.

     
    more » « less
  4. Wilkins, Laetitia_G E (Ed.)
    ABSTRACT

    Microbial species that comprise host-associated microbiomes play an essential role in maintaining and mediating the health of plants and animals. While defining the role of individual or even complex communities is important toward quantifying the effect of the microbiome on host health, it is often challenging to develop causal studies that link microbial populations to changes in host fitness. Here, we investigated the impacts of reduced microbial load following antibiotic exposure on the fitness of the anemone,Exaiptasia diaphanaand subsequent recovery of the host’s microbiome. Anemones were exposed to two different types of antibiotic solutions for 3 weeks and subsequently held in sterilized seawater for a 3-week recovery period. Our results revealed that both antibiotic treatments reduced the overall microbial load during and up to 1 week post-treatment. The observed reduction in microbial load was coupled with reduced anemone biomass, halted asexual reproduction rates, and for one of the antibiotic treatments, the partial removal of the anemone’s algal symbiont. Finally, our amplicon sequencing results of the 16S rRNA gene revealed that anemone bacterial composition only shifted in treated individuals during the recovery phase of the experiment, where we also observed a significant reduction in the overall diversity of the microbial community. Our work implies that theE. diaphana’smicrobiome contributes to host fitness and that the recovery of the host’s microbiome following disturbance with antibiotics leads to a reduced, but stable microbial state.

    IMPORTANCE

    Exaiptasia diaphanais an emerging model used to define the cellular and molecular mechanisms of coral-algal symbioses.E. diaphanaalso houses a diverse microbiome, consisting of hundreds of microbial partners with undefined function. Here, we applied antibiotics to quantify the impact of microbiome removal on host fitness as well as define trajectories in microbiome recovery following disturbance. We showed that reduction of the microbiome leads to negative impacts on host fitness, and that the microbiome does not recover to its original composition while held under aseptic conditions. Rather the microbiome becomes less diverse, but more consistent across individuals. Our work is important because it suggests that anemone microbiomes play a role in maintaining host fitness, that they are susceptible to disturbance events, and that it is possible to generate gnotobiotic individuals that can be leveraged in microbiome manipulation studies to investigate the role of individual species on host health.

     
    more » « less
  5. Fish-associated microorganisms are known to be affected by the environment and other external factors, such as microbial transfer between interacting partners. One of the most iconic mutualistic interactions on coral reefs is the cleaning interactions between cleaner fishes and their clients, during which direct physical contact occurs. Here, we characterized the skin bacteria of the Caribbean cleaner sharknose goby, Elacatinus evelynae, in four coral reefs of the US Virgin Islands using sequencing of the V4 region of the 16S rRNA gene. We specifically tested the relationship between gobies’ level of interaction with clients and skin microbiota diversity and composition. Our results showed differences in microbial alpha- and beta-diversity in the skin of gobies from different reef habitats and high inter-individual variation in microbiota diversity and structure. Overall, the results showed that fish-to-fish direct contact and specifically, access to a diverse clientele, influences the bacterial diversity and structure of cleaner gobies’ skin. Because of their frequent contact with clients, and therefore, high potential for microbial exchange, cleaner fish may serve as models in future studies aiming to understand the role of social microbial transfer in reef fish communities. 
    more » « less