- Award ID(s):
- 2144822
- PAR ID:
- 10518907
- Publisher / Repository:
- IEEE
- Date Published:
- ISSN:
- 2380-7504
- ISBN:
- 979-8-3503-0718-4
- Page Range / eLocation ID:
- 19694 to 19704
- Format(s):
- Medium: X
- Location:
- Paris, France
- Sponsoring Org:
- National Science Foundation
More Like this
-
In this work, we tackle the problem of active camera localization, which controls the camera movements actively to achieve an accurate camera pose. The past solutions are mostly based on Markov Localization, which reduces the position-wise camera uncertainty for localization. These approaches localize the camera in the discrete pose space and are agnostic to the localization-driven scene property, which restricts the camera pose accuracy in the coarse scale. We propose to overcome these limitations via a novel active camera localization algorithm, composed of a passive and an active localization module. The former optimizes the camera pose in the continuous pose space by establishing point-wise camera-world correspondences. The latter explicitly models the scene and camera uncertainty components to plan the right path for accurate camera pose estimation. We validate our algorithm on the challenging localization scenarios from both synthetic and scanned real-world indoor scenes. Experimental results demonstrate that our algorithm outperforms both the state-of-the-art Markov Localization based approach and other compared approaches on the fine-scale camera pose accuracymore » « less
-
This paper studies the challenging two-view 3D reconstruction problem in a rigorous sparse-view configuration, which is suffering from insufficient correspondences in the input image pairs for camera pose estimation. We present a novel Neural One-PlanE RANSAC framework (termed NOPE-SAC in short) that exerts excellent capability of neural networks to learn one-plane pose hypotheses from 3D plane correspondences. Building on the top of a Siamese network for plane detection, our NOPE-SAC first generates putative plane correspondences with a coarse initial pose. It then feeds the learned 3D plane correspondences into shared MLPs to estimate the one-plane camera pose hypotheses, which are subsequently reweighed in a RANSAC manner to obtain the final camera pose. Because the neural one-plane pose minimizes the number of plane correspondences for adaptive pose hypotheses generation, it enables stable pose voting and reliable pose refinement with a few of plane correspondences for the sparse-view inputs. In the experiments, we demonstrate that our NOPE-SAC significantly improves the camera pose estimation for the two-view inputs with severe viewpoint changes, setting several new state-of-the-art performances on two challenging benchmarks, i.e., MatterPort3D and ScanNet, for sparse-view 3D reconstruction. The source code is released at https://github.com/IceTTTb/NopeSAC for reproducible research.more » « less
-
One of the grand challenges in computer vision is to recover 3D poses and shapes of multiple human bodies with absolute scales from a single RGB image. The challenge stems from the inherent depth and scale ambiguity from a single view. The state of the art on 3D human pose and shape estimation mainly focuses on estimating the 3D joint locations relative to the root joint, defined as the pelvis joint. In this paper, a novel approach called Absolute-ROMP is proposed, which builds upon a one-stage multi-person 3D mesh predictor network, ROMP, to estimate multi-person 3D poses and shapes, but with absolute scales from a single RGB image. To achieve this, we introduce absolute root joint localization in the camera coordinate frame, which enables the estimation of 3D mesh coordinates of all persons in the image and their root joint locations normalized by the focal point. Moreover, a CNN and transformer hybrid network, called TransFocal, is proposed to predict the focal length of the image’s camera. This enables Absolute-ROMP to obtain absolute depth information of all joints in the camera coordinate frame, further improving the accuracy of our proposed method. The Absolute-ROMP is evaluated on the root joint localization and root-relative 3D pose estimation tasks on publicly available multi-person 3D pose datasets, and TransFocal is evaluated on a dataset created from the Pano360 dataset. Our proposed approach achieves state-of-the-art results on these tasks, outperforming existing methods or has competitive performance. Due to its real-time performance, our method is applicable to in-the-wild images and videos.more » « less
-
Abstract Many vision‐based indoor localization methods require tedious and comprehensive pre‐mapping of built environments. This research proposes a mapping‐free approach to estimating indoor camera poses based on a 3D style‐transferred building information model (BIM) and photogrammetry technique. To address the cross‐domain gap between virtual 3D models and real‐life photographs, a CycleGAN model was developed to transform BIM renderings into photorealistic images. A photogrammetry‐based algorithm was developed to estimate camera pose using the visual and spatial information extracted from the style‐transferred BIM. The experiments demonstrated the efficacy of CycleGAN in bridging the cross‐domain gap, which significantly improved performance in terms of image retrieval and feature correspondence detection. With the 3D coordinates retrieved from BIM, the proposed method can achieve near real‐time camera pose estimation with an accuracy of 1.38 m and 10.1° in indoor environments.
-
Recovering multi-person 3D poses and shapes with absolute scales from a single RGB image is a challenging task due to the inherent depth and scale ambiguity from a single view. Current works on 3D pose and shape estimation tend to mainly focus on the estimation of the 3D joint locations relative to the root joint , usually defined as the one closest to the shape centroid, in case of humans defined as the pelvis joint. In this paper, we build upon an existing multi-person 3D mesh predictor network, ROMP, to create Absolute-ROMP. By adding absolute root joint localization in the camera coordinate frame, we are able to estimate multi-person 3D poses and shapes with absolute scales from a single RGB image. Such a single-shot approach allows the system to better learn and reason about the inter-person depth relationship, thus improving multi-person 3D estimation. In addition to this end to end network, we also train a CNN and transformer hybrid network, called TransFocal, to predict the f ocal length of the image’s camera. Absolute-ROMP estimates the 3D mesh coordinates of all persons in the image and their root joint locations normalized by the focal point. We then use TransFocal to obtain focal length and get absolute depth information of all joints in the camera coordinate frame. We evaluate Absolute-ROMP on the root joint localization and root-relative 3D pose estimation tasks on publicly available multi-person 3D pose datasets. We evaluate TransFocal on dataset created from the Pano360 dataset and both are applicable to in-the-wild images and videos, due to real time performance.more » « less