Air–water interfacial adsorption complicates per‐ and polyfluoroalkyl substance (PFAS) transport in vadose zones. Air–water interfaces can arise from pendular rings between soil grains and thin water films on grain surfaces, the latter of which account for over 90% of the total air–water interfaces for most field‐relevant conditions. However, whether all thin‐water‐film air–water interfaces are accessible by PFAS and how mass‐transfer limitations in thin water films control PFAS transport in soils remain unknown. We develop a pore‐scale model that represents both PFAS adsorption at bulk capillary and thin‐water‐film air–water interfaces and the mass‐transfer processes between bulk capillary water and thin water films (including advection, aqueous diffusion, and surface diffusion along air–water interfaces). We apply the pore‐scale model to a series of numerical experiments—constrained by experimentally determined hydraulic parameters and air–water interfacial area data sets—to examine the impact of thin‐water‐film mass‐transfer limitations in a sand medium. Our analyses suggest: (a) The mass‐transfer limitations between bulk capillary water and thin water films inside a pore are negligible due to surface diffusion. (b) However, strong mass‐transfer limitations arise in thin water films of pore clusters where pendular rings disconnect. The mass‐transfer limitations lead to early arrival and long tailing behaviors even if surface diffusion is present. (c) Despite the mass‐transfer limitations, all air–water interfaces in the thin water films were accessed by PFAS under the simulated conditions. These findings highlight the importance of incorporating the thin‐water‐film mass‐transfer limitations and surface diffusion for modeling PFAS transport in vadose zones.
This content will become publicly available on March 1, 2025
Per‐ and poly‐fluoroalkyl substances (PFAS) are interfacially‐active contaminants that adsorb at air‐water interfaces (AWIs). Water‐unsaturated soils have abundant AWIs, which generally consist of two types: one is associated with the pendular rings of water between soil grains (i.e., bulk AWI) and the other arises from the thin water films covering the soil grains. To date, the two types of AWIs have been treated the same when modeling PFAS retention in vadose zones. However, the presence of electrical double layers of soil grain surfaces and the subsequently modified chemical potential of PFAS at the AWI may significantly change the PFAS adsorption at the thin‐water‐film AWI relative to that at the bulk AWI. Given that thin water films contribute to over 90% of AWIs in the vadose zone under many field‐relevant wetting conditions, it is critical to quantify the potential anomalous adsorption of PFAS at the thin‐water‐film AWI. We develop a thermodynamic‐based mathematical model to quantify this anomalous adsorption. The model couples the chemical equilibrium of PFAS with the Poisson‐Boltzmann equation that governs the distribution of electrical potential in a thin water film. Our model analyses suggest that PFAS adsorption at thin‐water‐film AWI can deviate significantly (up to 82%) from that at bulk AWIs. The deviation increases for lower porewater ionic strength, thinner water film, and higher soil grain surface charge. These results highlight the importance of accounting for the anomalous adsorption of PFAS at the thin‐water‐film AWI when modeling PFAS fate and transport in the vadose zone.
more » « less- Award ID(s):
- 2237015
- NSF-PAR ID:
- 10518949
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Water Resources Research
- Volume:
- 60
- Issue:
- 3
- ISSN:
- 0043-1397
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Per‐ and polyfluoroalkyl substances (PFAS) are surface‐active contaminants experiencing strong retention in vadose zones due to adsorption at air–water and solid–water interfaces. Leaching of PFAS through vadose zones poses great risks of groundwater contamination. Prior PFAS transport studies have focused on homogenous or layered vadose zones that significantly underrepresented the impact of preferential flow caused by soil heterogeneities—a primary factor known to dominantly control the subsurface transport of many contaminants. We conduct numerical simulations to investigate the impact of preferential flow on PFAS leaching in stochastically generated heterogeneous vadose zones. The simulations show that while shorter‐chain PFAS experience accelerated leaching similar to non‐surfactant solutes, the accelerated leaching of more surface‐active longer‐chain PFAS is uniquely amplified by 1.1–4.5 times due to reduced accessible air–water interfacial areas along preferential flow pathways. Our study highlights the criticality of characterizing soil heterogeneities for accurately predicting the leaching of long‐chain PFAS in vadose zones.
-
Abstract The study of grain boundaries is the foundation to understanding many of the intrinsic physical properties of bulk metals. Here, the preparation of microscale thin‐film gold bicrystals, using rapid melt growth, is presented as a model system for studies of single grain boundaries. This material platform utilizes standard fabrication tools and supports the high‐yield growth of thousands of bicrystals per wafer, each containing a grain boundary with a unique <111> tilt character. The crystal growth dynamics of the gold grains in each bicrystal are mediated by platinum gradients, which originate from the gold–platinum seeds responsible for gold crystal nucleation. This crystallization mechanism leads to a decoupling between crystal nucleation and crystal growth, and it ensures that the grain boundaries form at the middle of the gold microstructures and possess a uniform distribution of misorientation angles. It is envisioned that these bicrystals will enable the systematic study of the electrical, optical, chemical, thermal, and mechanical properties of individual grain boundary types.
-
Abstract The design of multifunctional alloys with multiple chemical components requires controllable synthesis approaches. Physical vapor deposition techniques, which result in thin films (<1 μm), have previously been demonstrated for micromechanical devices and metallic combinatorial libraries. However, this approach deviates from bulk-like properties due to the residual stress derived in thin films and is limited by total film thickness. Here, we report a route to obtain ternary Ni-Mn-Sn alloy thick films with controllable compositions and thicknesses by annealing electrochemically deposited multi-layer monatomic (Ni, Mn, Sn) films, deposited sequentially from separate aqueous deposition baths. We demonstrate (1) controllable compositions, with high degree of uniformity, (2) smooth films, and (3) high reproducibility between film transformation behavior. Our results demonstrate a positive correlation between alloy film thicknesses and grain sizes, as well as consistent bulk-like transformation behavior.
-
Abstract Warming across the western United States continues to reduce snowpack, lengthen growing seasons, and increase atmospheric demand, leading to uncertainty about moisture availability in montane forests. As many upland forests have thin soils and extensive rooting into weathered bedrock, deep vadose‐zone water may be a critical late‐season water source for vegetation and mitigate forest water stress. A key impediment to understanding the role of the deep vadose zone as a reservoir is quantifying the plant‐available water held there. We quantify the spatiotemporal dynamics of rock moisture held in the deep vadose zone in a montane catchment of the Rocky Mountains. Direct measurements of rock moisture were accompanied by monitoring of precipitation, transpiration, soil moisture, leaf‐water potentials, and groundwater. Using repeat nuclear magnetic resonance and neutron‐probe measurements, we found depletion of rock moisture among all our monitored plots. The magnitude of growing season depletion in rock moisture mirrored above‐ground vegetation density and transpiration, and depleted rock moisture was from ∼0.3 to 5 m below ground surface. Estimates of storage indicated weathered rock stored at least 4%–12% of mean annual precipitation. Persistent transpiration and discrepancies between estimated soil matric potentials and leaf‐water potentials suggest rock moisture may mitigate drought stress. These findings provide some of the first measurements of rock moisture use in the Rocky Mountains and indicated rock moisture use is not just confined to periods of drought or Mediterranean climates.