ABSTRACT Observations of gravitational waves emitted by merging compact binaries have provided tantalizing hints about stellar astrophysics, cosmology, and fundamental physics. However, the physical parameters describing the systems (mass, spin, distance) used to extract these inferences about the Universe are subject to large uncertainties. The most widely used method of performing these analyses requires performing many Monte Carlo integrals to marginalize over the uncertainty in the properties of the individual binaries and the survey selection bias. These Monte Carlo integrals are subject to fundamental statistical uncertainties. Previous treatments of this statistical uncertainty have focused on ensuring that the precision of the inferred inference is unaffected; however, these works have neglected the question of whether sufficient accuracy can also be achieved. In this work, we provide a practical exploration of the impact of uncertainty in our analyses and provide a suggested framework for verifying that astrophysical inferences made with the gravitational-wave transient catalogue are accurate. Applying our framework to models used by the LIGO–Virgo–KAGRA collaboration and in the wider literature, we find that Monte Carlo uncertainty in estimating the survey selection bias is the limiting factor in our ability to probe narrow population models and this will rapidly grow more problematic as the size of the observed population increases. 
                        more » 
                        « less   
                    
                            
                            Inferring the Future by Imagining the Past
                        
                    
    
            A single panel of a comic book can say a lot: it can depict not only where the characters currently are, but also their motions, their motivations, their emotions, and what they might do next. More generally, humans routinely infer complex sequences of past and future events from a static snapshot of a dynamic scene, even in situations they have never seen before. In this paper, we model how humans make such rapid and flexible inferences. Building on a long line of work in cognitive science, we offer a Monte Carlo algorithm whose inferences correlate well with human intuitions in a wide variety of domains, while only using a small, cognitively-plausible number of samples. Our key technical insight is a surprising connection between our inference problem and Monte Carlo path tracing, which allows us to apply decades of ideas from the computer graphics community to this seemingly-unrelated theory of mind task. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2328543
- PAR ID:
- 10518967
- Publisher / Repository:
- Proceedings of 2023 Conference on Neural Information Processing Systems
- Date Published:
- Format(s):
- Medium: X
- Location:
- New Orleans, LA, USA
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            How do humans build and navigate their complex social world? Standard theoretical frameworks often attribute this success to a foundational capacity to analyze other people’s appearance and behavior to make inferences about their unobservable mental states. Here we argue that this picture is incomplete. Human behavior leaves traces in our physical environment that reveal our presence, our goals, and even our beliefs and knowledge. A new body of research shows that, from early in life, humans easily detect these traces—sometimes spontaneously—and readily extract social information from the physical world. From the features and placement of inanimate objects, people make inferences about past events and how people have shaped the physical world. This capacity develops early and helps explain how people have such a rich understanding of others: by drawing not only on how others act but also on the environments they have shaped. Overall, social cognition is crucial not only to our reasoning about people and actions but also to our everyday reasoning about the inanimate world.more » « less
- 
            We consider causal inference for observational studies with data spread over two files. One file includes the treatment, outcome, and some covariates measured on a set of individuals, and the other file includes additional causally-relevant covariates measured on a partially overlapping set of individuals. By linking records in the two databases, the analyst can control for more covariates, thereby reducing the risk of bias compared to using only one file alone. When analysts do not have access to a unique identifier that enables perfect, error-free linkages, they typically rely on probabilistic record linkage to construct a single linked data set, and estimate causal effects using these linked data. This typical practice does not propagate uncertainty from imperfect linkages to the causal inferences. Further, it does not take advantage of relationships among the variables to improve the linkage quality. We address these shortcomings by fusing regression-assisted, Bayesian probabilistic record linkage with causal inference. The Markov chain Monte Carlo sampler generates multiple plausible linked data files as byproducts that analysts can use for multiple imputation inferences. Here, we show results for two causal estimators based on propensity score overlap weights. Using simulations and data from the Italy Survey on Household Income and Wealth, we show that our approach can improve the accuracy of estimated treatment effects.more » « less
- 
            Li, J.; Spanos, P. D.; Chen, J. B.; Peng, Y. B. (Ed.)Infrastructure networks offer critical services to modern society. They dynamically interact with the environment, operators, and users. Infrastructure networks are unique engineered systems, large in scale and high in complexity. One fundamental issue for their reliability assessment is the uncertainty propagation from stochastic disturbances across interconnected components. Monte Carlo simulation (MCS) remains approachable to quantify stochastic dynamics from components to systems. Its application depends on time efficiency along with the capability of delivering reliable approximations. In this paper, we introduce Quasi Monte Carlo (QMC) sampling techniques to improve modeling efficiency. Also, we suggest a principled Monte Carlo (PMC) method that equips the crude MCS with Probably Approximately Correct (PAC) approaches to deliver guaranteed approximations. We compare our proposed schemes with a competitive approach for stochastic dynamic analysis, namely the Probability Density Evolution Method (PDEM). Our computational experiments are on ideal but complex enough source-terminal (S-T) dynamic network reliability problems. We endow network links with oscillators so that they can jump across safe and failed states allowing us to treat the problem from a stochastic process perspective. We find that QMC alone can yield practical accuracy, and PMC with a PAC algorithm can deliver accuracy guarantees. Also, QMC is more versatile and efficient than the PDEM for network reliability assessment. The QMC and PMC methods provide advanced uncertainty propagation techniques to support decision makers with their reliability problems.more » « less
- 
            Statisticians often use Monte Carlo methods to approximate probability distributions, primarily with Markov chain Monte Carlo and importance sampling. Sequential Monte Carlo samplers are a class of algorithms that combine both techniques to approximate distributions of interest and their normalizing constants. These samplers originate from particle filtering for state space models and have become general and scalable sampling techniques. This article describes sequential Monte Carlo samplers and their possible implementations, arguing that they remain under-used in statistics, despite their ability to perform sequential inference and to leverage parallel processing resources among other potential benefits. Supplementary materials for this article are available online.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    