skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Title: ENSO-DRIVEN PRECIPITATION EVENTS RECORDED IN LAKE SEDIMENTS AND ALLUVIAL DEPOSITS IN THE SOUTHERN ECUADORIAN ANDES
The El Niño Southern Oscillation (ENSO) is a major source of global interannual climate variability, however our ability to predict the response of ENSO to changes in the mean state of climate is limited in part by a paucity of long-term records of ENSO. The sediment record from Laguna Pallcacocha in El Cajas National Park, southern Ecuador (4060 masl; 2°46’S; 79°14’W) records El Niño floods spanning the Holocene (Rodbell et al., 1999; Moy et al., 2002; Mark et al., 2022). The sediment record is unusual for the nearly continuous dark- and light-colored laminations (0.1-2.0 cm thick) that comprise the Holocene section. Light laminae represent deposition during periods of increased precipitation, mobilization of unvegetated sediment above the lake, and increased stream discharge, all of which generate density-driven undercurrents. Conversely, dark laminae are deposited relatively slowly by sedimentation of organic matter. To date, no other lake has yielded such a high-resolution record of rainfall events, and here we review sediment cores from the western-most lakes in the region that are most likely to also be influenced by convective driven precipitation during coastal (Pacific) El Niño events. All lakes in this region contain multiple distal tephra 0.1-1.0 cm thick that enable precise correlation among records. Cores from Laguna Pampiada, Pampiada Bog, and Laguna Narigüiña are all located between 3500 and 4000 masl, all are located within steep catchments, and cores from these lakes reveal high-resolution records of clastic sediment delivery as recorded in bulk magnetic susceptibility. The stratigraphy of flood plain alluvium in the catchment of lakes studied provides an independent record of the geomorphic response to intense rainfall events. Buried soil A-horizons are clear indicators of major flooding events, and radiocarbon dates from charcoal in the uppermost sections of these A horizons can provide age estimates for large magnitude rain events and resultant floods that are comparable to the record from lake sediment cores. A 3-year record of atmospheric pressure and temperature from a data logger located at 4143 masl in El Cajas National Park provides the basis for comparing atmospheric conditions in the region of the studied lakes with those at sea level on the Ecuador coast, ~50 km to the west.  more » « less
Award ID(s):
2002504
NSF-PAR ID:
10518979
Author(s) / Creator(s):
; ; ; ;
Corporate Creator(s):
Publisher / Repository:
Geologic Society of America
Date Published:
Format(s):
Medium: X
Location:
Pittsburgh PA
Sponsoring Org:
National Science Foundation
More Like this
  1. Continuous archives of the El Niño Southern Oscillation (ENSO) spanning multiple millennia are rare, as few geologic records faithfully preserve evidence of sub-decadal climate variability over long timescales. Different proxy archive types –such as lake sediments, foraminifera, tree-rings, and corals—have their own unique sensitivities to the climate system and can thus be difficult to intercompare. The sedimentary sequence from Laguna Pallcacocha, Ecuador, represents one of the most widely cited Holocene-scale ENSO reconstructions. Hundreds of mineral-rich flood laminae result from eastern Pacific El Niño events, when convective rainstorms drive erosion and terrigenous sediment transport in the Laguna Pallcacocha watershed. This reconstruction, however, is tangibly different from other ENSO proxy records as well as flood stratigraphies from proximal lakes. The watersheds of these nearby lakes have markedly different landscape characteristics, suggesting that the intensity of storms which generate flood deposits differ between each watershed. Thus, an integrated analysis of these three separate records helps constrain the frequency of paleo-ENSO events of different magnitudes. While moderate El Niño events may have been most frequent approximately 1000 years BP, particularly intense El Niño’s occur more frequently during the subsequent Little Ice Age (1450-1850 CE), consistent with tree-ring based reconstructions of ENSO amplitude and foraminiferal records of high-intensity eastern Pacific warming. A widely reported minima in El Niño frequency between approximately 7-4 kyr BP is a prominent feature in Laguna Pallcacocha record. This minima is not present, however, in the high-intensity flood stratigraphies from the other two lakes, which align more closely with ENSO amplitude records derived from speleothems and corals. These findings highlight the value of integrating evidence from multiple paleoclimate archives in ENSO reconstructions. 
    more » « less
  2. Abstract

    Sediment records from Lake Pallcacocha, Ecuador, have been interpreted as proxies of El Niño–Southern Oscillation (ENSO) variability, owing to increased precipitation in the area during El Niño events. However, the lake's watershed receives precipitation from processes arising from both the eastern and western Andes, where ENSO has different impacts; this has led to ambiguity in observed regional ENSO signals and has consequently challenged the suitability of the lake's records as ENSO proxies. Here, a mesoscale weather prediction model is used to investigate the regional circulation dynamics and precipitation response during different ENSO events, namely, Eastern Pacific (EP), Central Pacific (CP), coastal El Niño (COA), and La Niña (LN). The region receives more accumulated precipitation during COA and LN compared to EP and CP events. However, during EP and COA events, the region is prone to extreme precipitation associated with convective bursts originating from the Pacific. During CP and LN, moisture originates from the Atlantic and may reach the area as broader‐scale less‐intense precipitation. Statistical analysis of modeled precipitation reveals consistency between the number of threshold‐exceeding precipitation events in the high Andean elevations and the number of events identified in the late Holocene Pallcacocha record. These results illustrate the importance of considering ENSO flavors when interpreting paleoclimate proxies, highlight the role of COA events in understanding eastern Pacific proxy records, and support the hypothesis that Holocene changes in the number of events recorded in the lake sediment may indicate a change in the relative frequency of ENSO flavors.

     
    more » « less
  3. ABSTRACT

    Lake sediment records give valuable insight into the dynamic events that characterized the last deglaciation in Iceland. Here, we focus on the well‐dated sediment record from Hestvatn, a low‐elevation lake in south Iceland, that features six graded bedding events deposited by outburst floods from glacial lakes dammed by the decaying Iceland Ice Sheet (IIS) in the time period of the Vedde Ash and the G10ka Series tephra. Using climate proxies preserved in the sediment cores, in conjunction with regional glacial geomorphology, we reconstruct the retreat of the IIS in south Iceland, from a marine‐based glacier during the Younger Dryas to a land‐based glacier during the Preboreal. As the ice sheet margin withdrew to the central highlands, ice‐dammed lakes formed along glacier margins. The ice‐dams were occasionally breached, generating large‐scale jökulhlaups (catastrophic outburst floods) that deposited thick turbidite sequences preserved in the sediment record of Hestvatn. The high concentration of volcanic material incorporated within deglacial sediments indicates that along with IIS retreat, subglacial volcanic activity may have helped initiate some of the jökulhlaups. Onset of more stable Holocene conditions was reached after the final turbidite at ~10 kabp, when the IIS had withdrawn from most of the highlands of Iceland.

     
    more » « less
  4. Abstract

    Understanding El Niño-Southern Oscillation (ENSO) response to past climate forcings is hindered by conflicting paleoclimate evidence. Records from the eastern Pacific show an intensification of ENSO variability from early to late Holocene, while records from the central Pacific show highly variable ENSO throughout the Holocene without an obvious relation to insolation forcing, which is the main climate driver during this interval. Here, we show via climate model simulations that conflicting Holocene records can be reconciled by considering changes in the relative frequency of the three preferred spatial patterns in which El Niño events occur (Eastern Pacific, Central Pacific, and Coastal) and in the strength of their hydroclimatic impacts. The relationship between ENSO diversity and variance is not only crucial for interpreting paleo-ENSO records and understanding ENSO response to external forcings but can also be used across climate model simulations to help evaluate the realism of ENSO projections in a changing climate.

     
    more » « less
  5. Abstract

    The La Niña and El Niño phases of the El Niño-Southern Oscillation (ENSO) have major impacts on regional rainfall patterns around the globe, with substantial environmental, societal and economic implications. Long-term perspectives on ENSO behaviour, under changing background conditions, are essential to anticipating how ENSO phases may respond under future climate scenarios. Here, we derive a 7700-year, quantitative precipitation record using carbon isotope ratios from a single species of leaf preserved in lake sediments from subtropical eastern Australia. We find a generally wet (more La Niña-like) mid-Holocene that shifted towards drier and more variable climates after 3200 cal. yr BP, primarily driven by increasing frequency and strength of the El Niño phase. Climate model simulations implicate a progressive orbitally-driven weakening of the Pacific Walker Circulation as contributing to this change. At centennial scales, high rainfall characterised the Little Ice Age (~1450–1850 CE) in subtropical eastern Australia, contrasting with oceanic proxies that suggest El Niño-like conditions prevail during this period. Our data provide a new western Pacific perspective on Holocene ENSO variability and highlight the need to address ENSO reconstruction with a geographically diverse network of sites to characterise how both ENSO, and its impacts, vary in a changing climate.

     
    more » « less