Bulk nanostructured metals introduced by severe plastic deformation contain an excess of lattice defects. A nanostructured copper (Cu) processed by a high-pressure torsion technique was examined during in situ heating to investigate microstructural relaxation and quantify the evolution of microstructural parameters using high-energy synchrotron microbeam X-ray diffraction. While general microstructural relaxations, such as recovery, recrystallization, and subsequent grain growth, were observed, the key microstructural parameters, including grain size, microstrain, dislocation density, and thermal expansion coefficient, and their changes at critical temperatures were uniquely described and quantified through diffraction data. Based on this analysis, the stored energies driving thermally activated microstructural changes were estimated for individual defect types — grain boundaries, dislocations, and vacancies — that are expected to significantly influence the relaxation behavior of nanostructured Cu. This study demonstrates the effectiveness of diffraction characterization techniques for gaining a comprehensive understanding of the thermal stability of bulk nanostructured materials. 
                        more » 
                        « less   
                    
                            
                            Comparison of the Thermal Stability in Equal‐Channel‐Angular‐Pressed and High‐Pressure‐Torsion‐Processed Fe–21Cr–5Al Alloy
                        
                    
    
            Nanostructured steels are expected to have enhanced irradiation tolerance and improved strength. However, they suffer from poor microstructural stability at elevated temperatures. In this study, Fe–21Cr–5Al–0.026C (wt%) Kanthal D (KD) alloy belonging to a class of (FeCrAl) alloys considered for accident‐tolerant fuel cladding in light‐water reactors is nanostructured using two severe plastic deformation techniques of equal‐channel angular pressing (ECAP) and high‐pressure torsion (HPT), and their thermal stability between 500–700 °C is studied and compared. ECAP KD is found to be thermally stable up to 500 °C, whereas HPT KD is unstable at 500 °C. Microstructural characterization reveals that ECAP KD undergoes recovery at 550 °C and recrystallization above 600 °C, while HPT KD shows continuous grain growth after annealing above 500 °C. Enhanced thermal stability of ECAP KD is from significant fraction (>50%) of low‐angle grain boundaries (GBs) (misorientation angle 2–15°) stabilizing the microstructure due to their low mobility. Small grain sizes, a high fraction (>80%) of high‐angle GBs (misorientation angle >15°) and accordingly a large amount of stored GB energy, serve as the driving force for HPT KD to undergo grain growth instead of recrystallization driven by excess stored strain energy. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2207965
- PAR ID:
- 10519047
- Publisher / Repository:
- Wiley-VCH
- Date Published:
- Journal Name:
- Advanced Engineering Materials
- Volume:
- 25
- Issue:
- 21
- ISSN:
- 1438-1656
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            There has been a great interest in evaluating the potential of severe plastic deformation (SPD) to improve the performance of magnesium for biological applications. However, different properties and trends, including some contradictions, have been reported. The present study critically reviews the structural features, mechanical properties, corrosion behavior and biological response of magnesium and its alloys processed by SPD, with an emphasis on equal-channel angular pressing (ECAP) and high-pressure torsion (HPT). The unique mechanism of grain refinement in magnesium processed via ECAP causes a large scatter in the final structure, and these microstructural differences can affect the properties and produce difficulties in establishing trends. However, the recent advances in ECAP processing and the increased availability of data from samples produced via HPT clarify that grain refinement can indeed improve the mechanical properties and corrosion resistance without compromising the biological response. It is shown that processing via SPD has great potential for improving the performance of magnesium for biological applications.more » « less
- 
            null (Ed.)Grain growth under shear annealing is crucial for controlling the properties of polycrystalline materials. However, their microscopic kinetics are not well understood because individual atomic trajectories are difficult to track. Here, we study grain growth with single-particle kinetics in colloidal polycrystals using video microscopy. Rich grain-growth phenomena are revealed in three shear regimes, including the normal grain growth (NGG) in weak shear melting–recrystallization process in strong shear. For intermediate shear, early stage NGG is arrested by built-up stress and eventually gives way to dynamic abnormal grain growth (DAGG). We find that DAGG occurs via a melting–recrystallization process, which naturally explains the puzzling stress drop at the onset of DAGG in metals. Moreover, we visualize that grain boundary (GB) migration is coupled with shear via disconnection gliding. The disconnection-gliding dynamics and the collective motions of ambient particles are resolved. We also observed that grain rotation can violate the conventional relation R × θ = c o n s t a n t (R is the grain radius, and θ is the misorientation angle between two grains) by emission and annihilation of dislocations across the grain, resulting in a step-by-step rotation. Besides grain growth, we discover a result in shear-induced melting: The melting volume fraction varies sinusoidally on the angle mismatch between the triangular lattice orientation of the grain and the shear direction. These discoveries hold potential to inform microstructure engineering of polycrystalline materials.more » « less
- 
            Recent advances pertaining to modeling of grain fragmentation during deformation and recrystallization of polycrystalline metals using viscoplastic self-consistent (VPSC) polycrystal plasticity are combined into a field fluctuations VPSC (FF-VPSC) model. The FF-VPSC model is a higher-order formulation calculating the second moments of lattice rotation rates based on the second moments of stress fields inside grains and resulting intragranular misorientation distributions. The misorientation distributions are used to define a grain fragmentation sub-model for improving predictions of deformation texture evolution and to formulate kinetics sub-models for nucleation as well as to influence the stored energy governing grain growth for the predictions of recrystallization texture evolution. Formation of a copper-like texture in moderately high stacking fault energy (SFE) Cu and a brass-like texture in low SFE brass during rolling to very large strains are successfully predicted using the model. Remarkably, the model also predicts recrystallization textures from the deformation textures of the two metals after adjusting tradeoffs between transition-bands and grain boundary nucleation mechanisms. Additionally, rolling and recrystallization of an interstitial-free steel, tension and recrystallization of AA5182-O, and recrystallization of an additively manufacturing cobalt-based alloy MarM-509 are simulated to predict texture evolution. Through these case studies involving multiple alloys and thermo-mechanical processes we show that, in addition to being predictive with good accuracy, the key advantage of the model lies in its versatility. The FF-VPSC model, simulation results, and insights from the results are presented and discussed in this paper.more » « less
- 
            Abstract The magnesium alloy AZ31, which has undergone high-pressure torsion processing, was subjected to in situ annealing microbeam synchrotron high-energy X-ray diffraction and compared to the as-received rolled sheet material that was investigated through in situ neutron diffraction. While the latter only exhibits thermal expansion and minor recovery, the nanostructured specimen displays a complex evolution, including recovery, strong recrystallization, phase transformations, and various regimes of grain growth. Nanometer-scale grain sizes, determined using Williamson–Hall analysis, exhibit seamless growth, aligning with the transition to larger grains, as assessed through the occupancy of single-grain reflections on the diffraction rings. The study uncovers strain anomalies resulting from thermal expansion, segregation of Al atoms, and the kinetics of vacancy creation and annihilation. Notably, a substantial number of excess vacancies were generated through high-pressure torsion and maintained for driving the recrystallization and forming highly activated volumes for diffusion and phase precipitation during heating. The unsystematic scatter observed in the Williamson–Hall plot indicates high dislocation densities following severe plastic deformation, which significantly decrease during recrystallization. Subsequently, dislocations reappear during grain growth, likely in response to torque gradients in larger grains. It is worth noting that the characteristics of unsystematic scatter differ for dislocations created at high and low temperatures, underscoring the strong temperature dependence of slip system activation. Graphical Abstractmore » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    