This content will become publicly available on November 1, 2024
Nanostructured steels are expected to have enhanced irradiation tolerance and improved strength. However, they suffer from poor microstructural stability at elevated temperatures. In this study, Fe–21Cr–5Al–0.026C (wt%) Kanthal D (KD) alloy belonging to a class of (FeCrAl) alloys considered for accident‐tolerant fuel cladding in light‐water reactors is nanostructured using two severe plastic deformation techniques of equal‐channel angular pressing (ECAP) and high‐pressure torsion (HPT), and their thermal stability between 500–700 °C is studied and compared. ECAP KD is found to be thermally stable up to 500 °C, whereas HPT KD is unstable at 500 °C. Microstructural characterization reveals that ECAP KD undergoes recovery at 550 °C and recrystallization above 600 °C, while HPT KD shows continuous grain growth after annealing above 500 °C. Enhanced thermal stability of ECAP KD is from significant fraction (>50%) of low‐angle grain boundaries (GBs) (misorientation angle 2–15°) stabilizing the microstructure due to their low mobility. Small grain sizes, a high fraction (>80%) of high‐angle GBs (misorientation angle >15°) and accordingly a large amount of stored GB energy, serve as the driving force for HPT KD to undergo grain growth instead of recrystallization driven by excess stored strain energy.
more » « less- Award ID(s):
- 2207965
- NSF-PAR ID:
- 10519047
- Publisher / Repository:
- Wiley-VCH
- Date Published:
- Journal Name:
- Advanced Engineering Materials
- Volume:
- 25
- Issue:
- 21
- ISSN:
- 1438-1656
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
There has been a great interest in evaluating the potential of severe plastic deformation (SPD) to improve the performance of magnesium for biological applications. However, different properties and trends, including some contradictions, have been reported. The present study critically reviews the structural features, mechanical properties, corrosion behavior and biological response of magnesium and its alloys processed by SPD, with an emphasis on equal-channel angular pressing (ECAP) and high-pressure torsion (HPT). The unique mechanism of grain refinement in magnesium processed via ECAP causes a large scatter in the final structure, and these microstructural differences can affect the properties and produce difficulties in establishing trends. However, the recent advances in ECAP processing and the increased availability of data from samples produced via HPT clarify that grain refinement can indeed improve the mechanical properties and corrosion resistance without compromising the biological response. It is shown that processing via SPD has great potential for improving the performance of magnesium for biological applications.more » « less
-
null (Ed.)Grain growth under shear annealing is crucial for controlling the properties of polycrystalline materials. However, their microscopic kinetics are not well understood because individual atomic trajectories are difficult to track. Here, we study grain growth with single-particle kinetics in colloidal polycrystals using video microscopy. Rich grain-growth phenomena are revealed in three shear regimes, including the normal grain growth (NGG) in weak shear melting–recrystallization process in strong shear. For intermediate shear, early stage NGG is arrested by built-up stress and eventually gives way to dynamic abnormal grain growth (DAGG). We find that DAGG occurs via a melting–recrystallization process, which naturally explains the puzzling stress drop at the onset of DAGG in metals. Moreover, we visualize that grain boundary (GB) migration is coupled with shear via disconnection gliding. The disconnection-gliding dynamics and the collective motions of ambient particles are resolved. We also observed that grain rotation can violate the conventional relation R × θ = c o n s t a n t (R is the grain radius, and θ is the misorientation angle between two grains) by emission and annihilation of dislocations across the grain, resulting in a step-by-step rotation. Besides grain growth, we discover a result in shear-induced melting: The melting volume fraction varies sinusoidally on the angle mismatch between the triangular lattice orientation of the grain and the shear direction. These discoveries hold potential to inform microstructure engineering of polycrystalline materials.more » « less
-
An overview of the mechanical bonding of dissimilar bulk engineering metals through high‐pressure torsion (HPT) processing at room temperature is described in this Review. A recently developed procedure of mechanical bonding involves the application of conventional HPT processing to alternately stacked two or more disks of dissimilar metals. A macroscale microstructural evolution involves the concept of making tribomaterials and, for some dissimilar metal combinations, microscale microstructural changes demonstrate the synthesis of metal matrix nanocomposites (MMNCs) through the nucleation of nanoscale intermetallic compounds within the nanostructured metal matrix. Further straining by HPT during mechanical bonding provides an opportunity to introduce limited amorphous phases and a bulk metastable state. The mechanically bonded nanostructured hybrid alloys exhibit an exceptionally high specific strength and an enhanced plasticity. These experimental findings suggest a potential for using mechanical bonding for simply and expeditiously fabricating a wide range of new alloy systems by HPT processing.
-
Recent advances pertaining to modeling of grain fragmentation during deformation and recrystallization of polycrystalline metals using viscoplastic self-consistent (VPSC) polycrystal plasticity are combined into a field fluctuations VPSC (FF-VPSC) model. The FF-VPSC model is a higher-order formulation calculating the second moments of lattice rotation rates based on the second moments of stress fields inside grains and resulting intragranular misorientation distributions. The misorientation distributions are used to define a grain fragmentation sub-model for improving predictions of deformation texture evolution and to formulate kinetics sub-models for nucleation as well as to influence the stored energy governing grain growth for the predictions of recrystallization texture evolution. Formation of a copper-like texture in moderately high stacking fault energy (SFE) Cu and a brass-like texture in low SFE brass during rolling to very large strains are successfully predicted using the model. Remarkably, the model also predicts recrystallization textures from the deformation textures of the two metals after adjusting tradeoffs between transition-bands and grain boundary nucleation mechanisms. Additionally, rolling and recrystallization of an interstitial-free steel, tension and recrystallization of AA5182-O, and recrystallization of an additively manufacturing cobalt-based alloy MarM-509 are simulated to predict texture evolution. Through these case studies involving multiple alloys and thermo-mechanical processes we show that, in addition to being predictive with good accuracy, the key advantage of the model lies in its versatility. The FF-VPSC model, simulation results, and insights from the results are presented and discussed in this paper.more » « less
-
Cr-rich αʹprecipitation during aging typically leads to hardening and accordingly embrittlement of FeCrAl alloys, which needs to be suppressed. The influence of grain size on αʹprecipitation was studied by aging coarse-grained (CG), ultra-fine grained (UFG), and nanocrystalline (NC) ferritic Kanthal-D [KD; Fe-21Cr-5Al (wt.%) alloy] at 450, 500 and 550 oC for 500h. After aging at 450 and 500 oC, less hardening was observed in the UFG KD than in CG KD. Atom probe tomography indicated a lower number density and larger sized intragranular αʹ in the UFG versus the CG alloy. The smaller grain size and higher defect (vacancy and dislocation) density in the UFG KD facilitated diffusion and accordingly enhanced precipitation kinetics, leading to coarsening of precipitates, as well as saturation of precipitation at lower temperatures, as compared to those in CG KD. No hardening occurred in UFG and CG KD after aging at 550 oC, indicating that the miscibility gap is between 500 and 550 oC. NC KD exhibited softening after aging owing to grain growth. αʹprecipitation occurred in NC KD aged at 450 oC but not at 500 oC, indicating that miscibility gap is between 450 and 500 oC. Thus, the significantly smaller grain size in NC KD decreased the miscibility gap, as compared to that in CG and UFG KD. This is attributed to the absorption of vacancies by migrating grain boundaries during aging, suppressing αʹ nucleation and enhancing Cr solubility.more » « less