Abstract Ionic liquids (ILs) are promising electrolytes for high‐performance Li‐ion batteries (LIBs), which can significantly improve the safety and energy storage capacity. Although extensive experimental and computational studies have reported, further exploration is needed to understand the properties of IL systems, their microscopic structures and dynamics, and the behavior of Li ions in ILs. We report here results of molecular dynamics simulations as a function of electric field for Li diffusion in two IL systems, [EMIM][TFSI] and [BMIM][TFSI] doped with various concentrations of LiTFSI. We find that the migration of each individual Li ion depends largely on its micro‐environment, leading to differences by factors of up to 100 in the diffusivity. The structural and dynamical properties indicate that Li diffusion is affected significantly by the coordination and interaction with the oxygen species in the TFSI anions. Moreover, the IL cations also contribute to the Li diffusion mechanism by attenuating the Li–TFSI interaction. 
                        more » 
                        « less   
                    
                            
                            Enhanced Li-Ion Diffusivity of LiFePO 4 by Ru Doping: Ab Initio and Machine Learning Force Field Results
                        
                    
    
            Ionic diffusivity plays a central role in battery performance. A cathode material for lithium-ion (Li-ion) batteries, LiFePO4 (LFP), performs poorly at high current rates due to low Li-ion diffusivity. An increase in ionic diffusivity is essential to enhance battery performance for high-power-density applications such as hybrid and electric vehicles. Here, we use molecular dynamics simulations with machine learning force field and climbing-image nudged elastic band calculations to show that Li-ion diffusivity in LFP increases when doped with the transition-metal dopant ruthenium. This increase is associated with a reduction in Li diffusion energy barrier, diffusion length, and Li-vacancy formation energy, and it is accompanied by changes in the electronic band structure, specifically the appearance of electronic states in the middle of the band gap and the vicinity of the conduction band. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2052631
- PAR ID:
- 10519082
- Editor(s):
- Lama, B; Smirnova, A; Paudel, T
- Publisher / Repository:
- ACS
- Date Published:
- Journal Name:
- ACS Applied Energy Materials
- Volume:
- 6
- Issue:
- 20
- ISSN:
- 2574-0962
- Page Range / eLocation ID:
- 10424 to 10431
- Subject(s) / Keyword(s):
- LiFePO4 LFP doping-induced changes in conductivity ionic diffusivity nudged elastic band on-the-fly learning machine learning force field molecular dynamics
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Carbon fiber-based structural lithium-ion batteries are attracting significant attention in the automotive and aerospace industries due to their dual capability of energy storage and mechanical load-bearing, leading to weight reduction. These batteries utilize lightweight carbon fiber (CF) composites, which offer excellent stiffness, strength-to-weight ratios, and electrical conductivity. Polyacrylonitrile-based CFs, comprising graphitic and amorphous carbon, are particularly suitable for Li-ion battery applications as they allow the storage of lithium ions. However, integrating lithium iron phosphate (LFP) into CFs poses challenges due to complex lab-scale processes and the use of toxic dispersants, hindering large-scale industrial compatibility. To address this, we investigate the development of water-based LFP-integrated CF structural Li-ion batteries. Homogeneous suspensions are created using cellulose nanocrystals (CNCs) to form hybrid structures. The battery system employs LFP-modified CF as the cathode, unsized CF as the anode, and a water-based electrolyte. The LFP-CNC-graphene nanoplatelet (GNP) hybrids are coated onto CFs through immersion coating. Scanning electron microscopy (SEM) images confirm the well-dispersed and well-adhered LFP-CNC-GNP structures on the CF surface, contributing to their mechanical interlocking and electrochemical performance. The batteries demonstrate a specific energy density of 62.67 Wh/kg and a specific capacity of 72.7 mAh/g. Furthermore, the cyclic voltammetry experiments reveal the stability of the LFP-CNC-GNP-coated CF batteries over 200 cycles without degradation. This research enables the engineering of hybrid nanostructured battery laminates using novel LFP-CNC-GNP-coated CFs, opening avenues for the development of innovative Li-ion structural batteries.more » « less
- 
            Abstract Localized atomistic disorder in halide‐based solid electrolytes (SEs) can be leveraged to boost Li+mobility. In this study, Li+transport in structurally modified Li3HoCl6, via Br−introduction and Li+deficiency, is explored. The optimized Li3‐3yHo1+yCl6‐xBrxachieves an ionic conductivity of 3.8 mS cm−1at 25 °C, the highest reported for holmium halide materials.6,7Li nuclear magnetic resonance and relaxometry investigations unveil enhanced ion dynamics with bromination, attaining a Li+motional rate neighboring 116 MHz. X‐ray diffraction analyses reveal mixed‐anion‐induced phase transitions with disproportionate octahedral expansions and distortions, creating Ho‐free planes with favorable energetics for Li+migration. Bond valence site energy analysis highlights preferred Li+transport pathways, particularly in structural planes devoid of Ho3+blocking effects. Molecular dynamics simulations corroborate enhanced Li+diffusion with Br−introduction into Li3HoCl6. Li‐Ho electrostatic repulsions in the (001) plane presumably drive Li+diffusion into the Ho‐free (002) layer, enabling rapid intraplanar Li+motion and exchange between the 2d and 4h sites. Li3‐3yHo1+yCl6‐xBrxalso demonstrates good battery cycling stability. These findings offer valuable insights into the intricate correlations between structure and ion transport and will help guide the design of high‐performance fast ion conductors for all‐solid‐state batteries.more » « less
- 
            Abstract The development of all‐solid‐state Li‐ion batteries requires solid electrolyte materials with many desired properties, such as ionic conductivity, chemical and electrochemical stability, and mechanical durability. Computation‐guided materials design techniques are advantageous in designing and identifying new solid electrolytes that can simultaneously meet these requirements. In this joint computational and experimental study, a new family of fast lithium ion conductors, namely, LiTaSiO5with sphene structure, are successfully identified, synthesized, and demonstrated using a novel computational design strategy. First‐principles computation predicts that Zr‐doped LiTaSiO5sphene materials have fast Li diffusion, good phase stability, and poor electronic conductivity, which are ideal for solid electrolytes. Experiments confirm that Zr‐doped LiTaSiO5sphene structure indeed exhibits encouraging ionic conductivity. The lithium diffusion mechanisms in this material are also investigated, indicating the sphene materials are 3D conductors with facile 1D diffusion along the [101] direction and additional cross‐channel migration. This study demonstrates a novel design strategy of activating fast Li ionic diffusion in lithium sphenes, a new materials family of superionic conductors.more » « less
- 
            Aqueous Li-ion batteries (ALIBs) are an important class of battery chemistries owing to the intrinsic non-flammability of aqueous electrolytes. However, water is detrimental to most cathode materials and could result in rapid cell failure. Identifying the degradation mechanisms and evaluating the pros and cons of different cathode materials are crucial to guide the materials selection and maximize their electrochemical performance in ALIBs. In this study, we investigate the stability of LiFePO4(LFP), LiMn2O4(LMO) and LiNi0.8Mn0.1Co0.1O2(NMC) cathodes, without protective coating, in three different aqueous electrolytes, i.e., salt-in-water, water-in-salt, and molecular crowding electrolytes. The latter two are the widely reported “water-deficient electrolytes.” LFP cycled in the molecular crowding electrolyte exhibits the best cycle life in both symmetric and full cells owing to the stable crystal structure. Mn dissolution and surface reduction accelerate the capacity decay of LMO in water-rich electrolyte. On the other hand, the bulk structural collapse leads to the degradation of NMC cathodes. LMO demonstrates better full-cell performance than NMC in water-deficient aqueous electrolytes. LFP is shown to be more promising than LMO and NMC for long-cycle-life ALIB full cells, especially in the molecular crowding electrolyte. However, none of the aqueous electrolytes studied here provide enough battery performance that can compete with conventional non-aqueous electrolytes. This work reveals the degradation mechanisms of olivine, spinel, and layered cathodes in different aqueous electrolytes and yields insights into improving electrode materials and electrolytes for ALIBs.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    