skip to main content


Title: Data-Driven Polar Codes for Unknown Channels With and Without Memory
In this work, a novel data-driven methodology for designing polar codes is proposed. The methodology is suitable for the case where the channel is given as a ”black-box” and the designer has access to the channel for generating observations of its inputs and outputs, but does not have access to the explicit channel model. The methodology consists of two components: (1) a neural estimation of the sufficient statistic of the channel outputs using recent advances in Kullback Leibler (KL) estimation, and (2) a neural successive cancellation (NSC) decoder using three neural networks that replace the core elements of the successive cancellation (SC) decoder. The parameters of the neural networks are determined during a training phase where the mutual information of the effective channels is estimated. We demonstrate the performance of the algorithm on memoryless channels and on finite state channels. Then, we compare the results with the optimal decoding given by the SC and SC trellis decoders, respectively.  more » « less
Award ID(s):
2308445 2212437
NSF-PAR ID:
10519237
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
IEEE
Date Published:
ISBN:
978-1-6654-7554-9
Page Range / eLocation ID:
1890 to 1895
Format(s):
Medium: X
Location:
Taipei, Taiwan
Sponsoring Org:
National Science Foundation
More Like this
  1. Polar codes are widely used state-of-the-art codes for reliable communication that have recently been included in the 5th generation wireless standards (5G). However, there still remains room for design of polar decoders that are both efficient and reliable in the short blocklength regime. Motivated by recent successes of data-driven channel decoders, we introduce a novel 𝐂ur𝐑𝐈culum based 𝐒equential neural decoder for 𝐏olar codes (CRISP). We design a principled curriculum, guided by information-theoretic insights, to train CRISP and show that it outperforms the successive-cancellation (SC) decoder and attains near-optimal reliability performance on the Polar(32,16) and Polar(64,22) codes. The choice of the proposed curriculum is critical in achieving the accuracy gains of CRISP, as we show by comparing against other curricula. More notably, CRISP can be readily extended to Polarization-Adjusted-Convolutional (PAC) codes, where existing SC decoders are significantly less reliable. To the best of our knowledge, CRISP constructs the first data-driven decoder for PAC codes and attains near-optimal performance on the PAC(32,16) code. 
    more » « less
  2. Cryptographic protocols are often implemented at upper layers of communication networks, while error-correcting codes are employed at the physical layer. In this paper, we consider utilizing readily-available physical layer functions, such as encoders and decoders, together with shared keys to provide a threshold-type security scheme. To this end, the effect of physical layer communication is abstracted out and the channels between the legitimate parties, Alice and Bob, and the eaves-dropper Eve are assumed to be noiseless. We introduce a model for threshold-secure coding, where Alice and Bob communicate using a shared key in such a way that Eve does not get any information, in an information-theoretic sense, about the key as well as about any subset of the input symbols of size up to a certain threshold. Then, a framework is provided for constructing threshold-secure codes form linear block codes while characterizing the requirements to satisfy the reliability and security conditions. Moreover, we propose a threshold-secure coding scheme, based on Reed-Muller (RM) codes, that meets security and reliability conditions. Furthermore, it is shown that the encoder and the decoder of the scheme can be implemented efficiently with quasi-linear time complexity. In particular, a low-complexity successive cancellation decoder is shown for the RM-based scheme. Also, the scheme is flexible and can be adapted given any key length. 
    more » « less
  3. Polar codes have been shown to provide an effective mechanism for achieving physical-layer security over various wiretap channels. A majority of these schemes require channel state information (CSI) at the encoder for both intended receivers and eavesdroppers. In this paper, we consider a polar coding scheme for secrecy over a Gaussian wiretap channel when no CSI is available. We show that the availability of a shared keystream between friendly parties allows polar codes to be used for both secure and reliable communications, even when the eavesdropper knows a large fraction of the keystream. The scheme relies on a predetermined strategy for partitioning the bits to be encoded into a set of frozen bits and a set of information bits. The frozen bits are filled with bits from the keystream, and we evaluate the security gap when the cyclic redundancy check-aided successive cancellation list decoder is used at both receivers in the wiretap channel model. 
    more » « less
  4. Liva, Gianluigi (Ed.)
    Unsourced random access emerged as a novel wireless paradigm enabling massive device connectivity on the uplink. We consider quasi-static Rayleigh fading wherein the access point has multiple receive antennas and every mobile device a single transmit antenna. The objective is to construct a coding scheme that minimizes the energy-per-bit subject to a maximum probability of error given a fixed message length and a prescribed number of channel uses. Every message is partitioned into two parts: the first determines pilot values and spreading sequences; the remaining bits are encoded using a polar code. The transmitted signal contains two distinct sections. The first features pilots and the second is composed of spread modulated symbols. The receiver has three modules: an energy detector, tasked with recovering the set of active pilot sequences; a bank of Minimum Mean Square Error (MMSE) estimators acting on measurements at the receiver; and a polar list-decoder, which seeks to retrieve the coded information bits. A successive cancellation step is applied to subtract recovered codewords, before the residual signal is fed back to the decoder. Empirical evidence suggests that an appropriate combination of these ideas can outperform state-of-the-art coding techniques when the number of active users exceeds one hundred. 
    more » « less
  5. We present the Hybrid Polar Decoder (HyPD), a hybrid classical-quantum decoder design for Polar error correction codes, which are becoming widespread in today’s 5G and tomorrow’s 6G networks. HyPD employs CMOS processing for the Polar decoder’s binary tree traversal, and Quantum Annealing (QA) processing for the Quantum Polar Decoder (QPD)-a Maximum-Likelihood QA-based Polar decoder submodule. QPD’s design efficiently transforms a Polar decoder into a quadratic polynomial optimization form, then maps this polynomial on to the physical QA hardware via QPD-MAP, a customized problem mapping scheme tailored to QPD. We have experimentally evaluated HyPD on a state-of-the-art QA device with 5,627 qubits, for 5G-NR Polar codes with block length of 1,024 bits, in Rayleigh fading channels. Our results show that HyPD outperforms Successive Cancellation List decoders of list size eight by half an order of bit error rate magnitude, and achieves a 1,500-bytes frame delivery rate of 99.1%, at 1 dB signal-to-noise ratio. Further studies present QA compute time considerations. We also propose QPD-HW, a novel QA hardware topology tailored for the task of decoding Polar codes. QPD-HW is sparse, flexible to code rate and block length, and may be of potential interest to the designers of tomorrow’s 6G wireless networks. 
    more » « less