Natural history collections are invaluable repositories of biological information that provide an unrivaled record of Earth's biodiversity. Museum genomics—genomics research using traditional museum and cryogenic collections and the infrastructure supporting these investigations—has particularly enhanced research in ecology and evolutionary biology, the study of extinct organisms, and the impact of anthropogenic activity on biodiversity. However, leveraging genomics in biological collections has exposed challenges, such as digitizing, integrating, and sharing collections data; updating practices to ensure broadly optimal data extraction from existing and new collections; and modernizing collections practices, infrastructure, and policies to ensure fair, sustainable, and genomically manifold uses of museum collections by increasingly diverse stakeholders. Museum genomics collections are poised to address these challenges and, with increasingly sensitive genomics approaches, will catalyze a future era of reproducibility, innovation, and insight made possible through integrating museum and genome sciences.
more »
« less
Using Museum collections to assess the impact of industrialization on mussel (Mytilus edulis) calcification
Mytilus edulisis a commercially and ecologically important species found along the east coast of the United States. Ecologically,M.edulisimproves water quality through filtration feeding and provides habitat formation and coastal protection through reef formation. Like many marine calcifiers, ocean warming, and acidification are a growing threat to these organisms—impacting their morphology and function. Museum collections are useful in assessing long-term environmental impacts on organisms in a natural multi-stressor environment, where acclimation and adaptation can be considered. Using the American Museum of Natural History collections ranging from the early 1900s until now, we show that shell porosity changes through time. Shells collected today are significantly more porous than shells collected in the 1960s and, at some sites, than shells collected from the early 1900s. The disparity between porosity changes matches well with the warming that occurred over the last 130 years in the north Atlantic suggesting that warming is causing porosity changes. However, more work is required to discern local environmental impacts and to fully identify porosity drivers. Since, porosity is known to affect structural integrity, porosity increasing through time could have negative consequences for mussel reef structural integrity and hence habitat formation and storm defenses.
more »
« less
- Award ID(s):
- 1852787
- PAR ID:
- 10519386
- Editor(s):
- Fernández_Robledo, José A
- Publisher / Repository:
- PLoS ONE
- Date Published:
- Journal Name:
- PLoS ONE
- Volume:
- 19
- Issue:
- 4
- ISSN:
- 1932-6203
- Page Range / eLocation ID:
- e0301874
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Plastic is pervasive in modern economies and ecosystems. Freshwater fish ingest microplastics (i.e., particles <5 mm), but no studies have examined historical patterns of their microplastic consumption. Measuring the patterns of microplastic pollution in the past is critical for predicting future trends and for understanding the relationship between plastics in fish and the environment. We measured microplastics in digestive tissues of specimens collected from the years 1900–2017 and preserved in museum collections. We collected new fish specimens in 2018, along with water and sediment samples. We selected four species:Micropterus salmoides(largemouth bass),Notropis stramineus(sand shiner),Ictalurus punctatus(channel catfish), andNeogobius melanostomus(round goby) because each was well represented in museum collections, are locally abundant, and collected from urban habitats. For each individual, we dissected the digestive tissue from esophagus to anus, subjected tissue to peroxide oxidation, examined particles under a dissecting microscope, and used Raman spectroscopy to characterize the particles' chemical composition. No microplastics were detected in any fish prior to 1950. From mid‐century to 2018, microplastic concentrations showed a significant increase when data from all fish were considered together. All detected particles were fibers, and represented plastic polymers (e.g., polyester) along with mixtures of natural and synthetic textiles. For the specimens collected in 2018, microplastics in fish and sediment showed similar patterns across study sites, while water column microplastics showed no differences among locations. Overall, plastic pollution in common freshwater fish species is increasing and pervasive across individuals and species, and is likely related to changes in environmental concentrations. Museum specimens are an overlooked source for assessing historical patterns of microplastic pollution, and for predicting future trends in freshwater fish, thereby helping to sustain the health of commercial and recreational fisheries worldwide.more » « less
-
The composition and state of the earth’s lithosphere through time has had profound effect on past and present biodiversity and will continue to do so into the future. Environments ranging from deep sea hydrothermal vents to active continental volcanic centres provide a wide range of ecosystems that have shaped the planet we know. Catastrophic events relating to movements of the lithosphere and events deep in the mantle have also caused major biodiversity changes such as mass extinctions. Our museum collections contain rock and fossil specimens collected from many of these environments and suites of samples specifically collected in order to better understand the evolution of our planet. Requests to carry out geochemical investigations on these samples are common and a large amount of data is generated as a result. Currently there are no natural history collections management systems tailored towards recording and delivering these datasets and the result is that the data is recorded in various distributed systems and cannot be easily assessed and used. It is important for these analyses on our museum collections to be delivered in a standard way so that the importance and relevance of these collections can be demonstrated and large datasets generated to answer big questions regarding the geological evolution of our planet. Examples of these questions include “how and when will volcanic eruptions will occur?” and “what has been the role of volcanism during mass extinction?”. Other geochemical studies such as oxygen isotope studies have been carried out on museum collections in order to investigate past oceanic environments and the effects of changes in climate on our oceans. Geochemical data aggregators such as EarthChem have made great strides in working towards international data standards and providing portals for delivering this type of data. As we progress towards one European Collection (DiSSCo) it is vital that we recognise the importance of these natural history collections related geochemical datasets and include delivering them on the general roadmap.more » « less
-
Abstract Natural history collections (NHC) provide a wealth of information that can be used to understand the impacts of global change on biodiversity. As such, there is growing interest in using NHC data to estimate changes in species' distributions and abundance trends over historic time horizons when contemporary survey data are limited or unavailable.However, museum specimens were not collected with the purpose of estimating population trends and thus can exhibit spatiotemporal and collector‐specific biases that can impose severe limitations to using NHC data for evaluating population trajectories.Here we review the challenges associated with using museum records to track long‐term insect population trends, including spatiotemporal biases in sampling effort and sparse temporal coverage within and across years. We highlight recent methodological advancements that aim to overcome these challenges and discuss emerging research opportunities.Specifically, we examine the potential of integrating museum records and other contemporary data sources (e.g. collected via structured, designed surveys and opportunistic citizen science programs) in a unified analytical framework that accounts for the sampling biases associated with each data source. The emerging field of integrated modelling provides a promising framework for leveraging the wealth of collections data to accurately estimate long‐term trends of insect populations and identify cases where that is not possible using existing data sources.more » « less
-
Leal, JH; Bieler, R (Ed.)Among biocollections, mollusks are a particularly powerful resource for a wide range of studies, including biogeography, conservation, ecology, environmental monitoring, evolutionary biology, and systematics. U.S. mollusk collections are housed in stand-alone natural history museums, at universities, and in a variety of governmental and non-governmental institutions. Differing in their histories, specializations, and uses, they share common needs for long-term development, and collectively contribute to biodiversity knowledge at regional, national, and global scales. Commitment by dedicated staff, collectors, and volunteers, institutional investments, philanthropy, and governmental funding have built and maintained these collections and their support infrastructure. Efforts by the North American malacological collection community since the early 1970s led to coordination in database design but left the data isolated in individual institutions. Collection digitization developed through a combination of individual/institutional initiatives and federally supported projects funded by the National Science Foundation (NSF) and the Institute of Museum and Library Services (IMLS). Advances in digital technology enabled the shift toward nationally and globally unified collections. Networking and collaboration were greatly accelerated by NSF’s Advancing Digitization of Biodiversity Collections (ADBC) program, which created a central coordinating organization (iDigBio) and funded Thematic Collections Network (TCN) projects. One such TCN was developed to mobilize nearly 90% of the known U.S. museum-collections-based data of the U.S. Atlantic and Gulf coasts (Mobilizing Millions of Marine Mollusks of the Eastern Seaboard—ESB). The project, involving 16 museum collections (plus the Smithsonian Institution as federal partner), combines data from approximately 4.5 million specimens collected from the ESB region and makes them available to the TCN portal InvertEBase and other aggregators such as iDigBio and GBIF. In addition to fostering community and expanding the corpus of available digitized mollusk records through new data entry and georeferencing (GEOLocate, CoGe) and standardizing taxonomy, the project drove key innovations for the invertebrate collections community. For instance, it worked with the Biodiversity Information Standards (TDWG) group to create a new Darwin Core standard term, “Vitality”, expanded GEOLocate to support complex geospatial types, integrated global elevation and bathymetric datasets directly into georeferencing workflow, and developed various education and outreach public outreach products. Synthesizing from the 15 following articles with individual histories of ESB-participating mollusk collections, several topics are discussed—such as what defines a “good” mollusk collection in the digital age and the importance of federal support for this national resource.more » « less
An official website of the United States government

