skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: MaskPure: Improving Defense Against Text Adversaries with Stochastic Purification
The improvement of language model robustness, including successful defense against adversarial attacks, remains an open problem. In computer vision settings, the stochastic noising and de-noising pro- cess provided by diffusion models has proven useful for purifying input images, thus improving model robustness against adversarial attacks. Similarly, some initial work has explored the use of random noising and de-noising to mitigate adversarial attacks in an NLP setting, but im- proving the quality and efficiency of these methods is necessary for them to remain competitive. We extend upon methods of input text purifica- tion that are inspired by diffusion processes, which randomly mask and refill portions of the input text before classification. Our novel method, MaskPure, exceeds or matches robustness compared to other contempo- rary defenses, while also requiring no adversarial classifier training and without assuming knowledge of the attack type. In addition, we show that MaskPure is provably certifiably robust. To our knowledge, MaskPure is the first stochastic-purification method with demonstrated success against both character-level and word-level attacks, indicating the gen- eralizable and promising nature of stochastic denoising defenses. In sum- mary: the MaskPure algorithm bridges literature on the current strongest certifiable and empirical adversarial defense methods, showing that both theoretical and practical robustness can be obtained together. Code is available on GitHub.  more » « less
Award ID(s):
2050919
PAR ID:
10519457
Author(s) / Creator(s):
;
Publisher / Repository:
International Conference on Natural Language & Information Systems
Date Published:
Format(s):
Medium: X
Location:
The 29th International Conference on Natural Language & Information Systems, University of Turin, Italy
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Patch adversarial attacks on images, in which the attacker can distort pixels within a region of bounded size, are an important threat model since they provide a quantitative model for physical adversarial attacks. In this paper, we introduce a certifiable defense against patch attacks that guarantees for a given image and patch attack size, no patch adversarial examples exist. Our method is related to the broad class of randomized smoothing robustness schemes which provide high-confidence probabilistic robustness certificates. By exploiting the fact that patch attacks are more constrained than general sparse attacks, we derive meaningfully large robustness certificates against them. Additionally, in contrast to smoothing-based defenses against L_p and sparse attacks, our defense method against patch attacks is de-randomized, yielding improved, deterministic certificates. Compared to the existing patch certification method proposed by Chiang et al. (2020), which relies on interval bound propagation, our method can be trained significantly faster, achieves high clean and certified robust accuracy on CIFAR-10, and provides certificates at ImageNet scale. For example, for a 5-by-5 patch attack on CIFAR-10, our method achieves up to around 57.6% certified accuracy (with a classifier with around 83.8% clean accuracy), compared to at most 30.3% certified accuracy for the existing method (with a classifier with around 47.8% clean accuracy). Our results effectively establish a new state-of-the-art of certifiable defense against patch attacks on CIFAR-10 and ImageNet. 
    more » « less
  2. null (Ed.)
    In the last couple of years, several adversarial attack methods based on different threat models have been proposed for the image classification problem. Most existing defenses consider additive threat models in which sample perturbations have bounded L_p norms. These defenses, however, can be vulnerable against adversarial attacks under non-additive threat models. An example of an attack method based on a non-additive threat model is the Wasserstein adversarial attack proposed by Wong et al. (2019), where the distance between an image and its adversarial example is determined by the Wasserstein metric ("earth-mover distance") between their normalized pixel intensities. Until now, there has been no certifiable defense against this type of attack. In this work, we propose the first defense with certified robustness against Wasserstein Adversarial attacks using randomized smoothing. We develop this certificate by considering the space of possible flows between images, and representing this space such that Wasserstein distance between images is upper-bounded by L_1 distance in this flow-space. We can then apply existing randomized smoothing certificates for the L_1 metric. In MNIST and CIFAR-10 datasets, we find that our proposed defense is also practically effective, demonstrating significantly improved accuracy under Wasserstein adversarial attack compared to unprotected models. 
    more » « less
  3. Modern image classification systems are often built on deep neural networks, which suffer from adversarial examples—images with deliberately crafted, imperceptible noise to mislead the network’s classification. To defend against adversarial examples, a plausible idea is to obfuscate the network’s gradient with respect to the input image. This general idea has inspired a long line of defense methods. Yet, almost all of them have proven vulnerable. We revisit this seemingly flawed idea from a radically different perspective. We embrace the omnipresence of adversarial examples and the numerical procedure of crafting them, and turn this harmful attacking process into a useful defense mechanism. Our defense method is conceptually simple: before feeding an input image for classification, transform it by finding an adversarial example on a pre- trained external model. We evaluate our method against a wide range of possible attacks. On both CIFAR-10 and Tiny ImageNet datasets, our method is significantly more robust than state-of-the-art methods. Particularly, in comparison to adversarial training, our method offers lower training cost as well as stronger robustness. 
    more » « less
  4. It has been shown that adversaries can craft example inputs to neu- ral networks which are similar to legitimate inputs but have been created to purposely cause the neural network to misclassify the input. These adversarial examples are crafted, for example, by cal- culating gradients of a carefully defined loss function with respect to the input. As a countermeasure, some researchers have tried to design robust models by blocking or obfuscating gradients, even in white-box settings. Another line of research proposes introducing a separate detector to attempt to detect adversarial examples. This approach also makes use of gradient obfuscation techniques, for example, to prevent the adversary from trying to fool the detector. In this paper, we introduce stochastic substitute training, a gray-box approach that can craft adversarial examples for defenses which obfuscate gradients. For those defenses that have tried to make models more robust, with our technique, an adversary can craft ad- versarial examples with no knowledge of the defense. For defenses that attempt to detect the adversarial examples, with our technique, an adversary only needs very limited information about the defense to craft adversarial examples. We demonstrate our technique by applying it against two defenses which make models more robust and two defenses which detect adversarial examples 
    more » « less
  5. Dong, Yinpeng; Pang, Tianyu; Yang, Xiao; Wong, Eric; Kolter, Zico; He, Yuan (Ed.)
    Current machine learning models suffer from evasion attacks (i.e., adversarial examples) raising concerns in security-sensitive settings such as autonomous vehicles. While many countermeasures may look promising, only a few withstand rigorous evaluation. Recently, defenses using random transformations (RT) have shown impressive results, particularly BaRT (Raff et al. 2019) on ImageNet. However, this type of defense has not been rigorously evaluated, leaving its robustness properties poorly understood. The stochasticity of these models also makes evaluation more challenging and many proposed attacks on deterministic models inapplicable. First, we show that the BPDA attack (Athalye, Carlini, and Wagner 2018) used in BaRT’s evaluation is ineffective and likely overestimates its robustness. We then attempt to construct the strongest possible RT defense through the informed selection of transformations and Bayesian optimization for tuning their parameters. Furthermore, we create the strongest possible attack to evaluate our RT defense. Our new attack vastly outperforms the baseline, reducing the accuracy by 83% compared to the 19% reduction by the commonly used EoT attack (4.3× improvement). Our result indicates that the RT defense on Imagenette dataset (ten-class subset of ImageNet) is not robust against adversarial examples. Extending the study further, we use our new attack to adversarially train RT defense (called AdvRT). However, the attack is still not sufficiently strong, and thus, the AdvRT model is no more robust than its RT counterpart. In the process of formulating our defense and attack, we perform several ablation studies and uncover insights that we hope will broadly benefit scientific communities studying stochastic neural networks and their robustness properties. 
    more » « less