Despite the prominent role of the K-Ras protein in many different types of human cancer, major gaps in atomic-level information severely limit our understanding of its functions in health and disease. Here, we report the quantitative backbone structural dynamics of K-Ras by solution nuclear magnetic resonance spectroscopy of the active state of wild-type K-Ras bound to guanosine triphosphate (GTP) nucleotide and two of its oncogenic P-loop mutants, G12D and G12C, using a new nanoparticle-assisted spin relaxation method, relaxation dispersion and chemical exchange saturation transfer experiments covering the entire range of timescales from picoseconds to milliseconds. Our combined experiments allow detection and analysis of the functionally critical Switch I and Switch II regions, which have previously remained largely unobservable by X-ray crystallography and nuclear magnetic resonance spectroscopy. Our data reveal cooperative transitions of K-Ras·GTP to a highly dynamic excited state that closely resembles the partially disordered K-Ras·GDP state. These results advance our understanding of differential GTPase activities and signaling properties of the wild type versus mutants and may thus guide new strategies for the development of therapeutics.
more » « less- Award ID(s):
- 2103637
- PAR ID:
- 10519459
- Publisher / Repository:
- Nature Portfolio
- Date Published:
- Journal Name:
- Nature Structural & Molecular Biology
- Volume:
- 30
- Issue:
- 10
- ISSN:
- 1545-9993
- Page Range / eLocation ID:
- 1446 to 1455
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
31 P NMR spectroscopy and the study of nuclear spin singlet relaxation phenomena are of interest in particular due to the importance of phosphorus-containing compounds in physiology. We report the generation and measurement of relaxation of 31 P singlet order in a chemically equivalent but magnetically inequivalent case. Nuclear magnetic resonance singlet state lifetimes of 31 P pairs have heretofore not been reported. Couplings between 1 H and 31 P nuclei lead to magnetic inequivalence and serve as a mechanism of singlet state population conversion within this molecule. We show that in this molecule singlet relaxation occurs at a rate significantly faster than spin–lattice relaxation, and that anticorrelated chemical shift anisotropy can account for this observation. Calculations of this mechanism, with the help of molecular dynamics simulations and ab initio calculations, provide excellent agreement with the experimental findings. This study could provide guidance for the study of 31 P singlets within other compounds, including biomolecules.more » « less
-
Abstract Radio Amplification by Stimulated Emission of Radiation (RASER) is a phenomenon observed during nuclear magnetic resonance (NMR) experiments with strongly negatively polarized systems. This phenomenon may be utilized for the production of very narrow NMR lines, background-free NMR spectroscopy, and excitation-free sensing of chemical transformations. Recently, novel methods of producing RASER by ParaHydrogen-Induced Polarization (PHIP) were introduced. Here, we show that pairwise addition of parahydrogen to various propargylic compounds induces RASER activity of other protons beyond those chemically introduced in the reaction. In high-field PHIP, negative polarization initiating RASER is transferred via intramolecular cross-relaxation. When parahydrogen is added in Earth’s field followed by adiabatic transfer to a high field, RASER activity of other protons is induced via both
J -couplings and cross-relaxation. This through-bond and through-space induction of RASER holds potential for the ongoing development and expansion of RASER applications and can potentially enhance spectral resolution in two-dimensional NMR spectroscopy techniques. -
Metabolomic profiling is an increasingly important method for identifying potential biomarkers in cancer cells with a view towards improved diagnosis and treatment. Nuclear magnetic resonance (NMR) provides a potentially noninvasive means to accurately characterize differences in the metabolomic profiles of cells. In this work, we use1H NMR to measure the metabolomic profiles of water soluble metabolites extracted from isogenic control and oncogenic HRAS-, KRAS-, and NRAS-transduced BEAS2B lung epithelial cells to determine the robustness of NMR metabolomic profiling in detecting differences between the transformed cells and their untransformed counterparts as well as differences among the RAS-transformed cells. Unique metabolomic signatures between control and RAS-transformed cell lines as well as among the three RAS isoform-transformed lines were found by applying principal component analysis to the NMR data. This study provides a proof of principle demonstration that NMR-based metabolomic profiling can robustly distinguish untransformed and RAS-transformed cells as well as cells transformed with different RAS oncogenic isoforms. Thus, our data may potentially provide new diagnostic signatures for RAS-transformed cells.
-
Abstract RexA and RexB function as an exclusion system that prevents bacteriophage T4rII mutants from growing on Escherichia coli λ phage lysogens. Recent data established that RexA is a non-specific DNA binding protein that can act independently of RexB to bias the λ bistable switch toward the lytic state, preventing conversion back to lysogeny. The molecular interactions underlying these activities are unknown, owing in part to a dearth of structural information. Here, we present the 2.05-Å crystal structure of the λ RexA dimer, which reveals a two-domain architecture with unexpected structural homology to the recombination-associated protein RdgC. Modelling suggests that our structure adopts a closed conformation and would require significant domain rearrangements to facilitate DNA binding. Mutagenesis coupled with electromobility shift assays, limited proteolysis, and double electron–electron spin resonance spectroscopy support a DNA-dependent conformational change. In vivo phenotypes of RexA mutants suggest that DNA binding is not a strict requirement for phage exclusion but may directly contribute to modulation of the bistable switch. We further demonstrate that RexA homologs from other temperate phages also dimerize and bind DNA in vitro. Collectively, these findings advance our mechanistic understanding of Rex functions and provide new evolutionary insights into different aspects of phage biology.
-
Abstract Carbonium ions are an important class of reaction intermediates, but their dynamic evolution is difficult to be monitored by in situ techniques under experimental conditions because of their extremely short lifetime. Probably the most famous case is 2‐norbornyl cation (2NB+): its existing form (classical or non‐classical) had been debated for decades, until the concrete proof of non‐classical geometry was achieved by X‐ray crystallographic characterization at ultra‐low temperature (40 K) and super acidic environment. However, we lack the understanding about 2NB+at ambient conditions. Herein, by taking advantage of the confinement effect and delocalized acidic environment of zeolites, we successfully stabilized 2NB+and unequivocally confirmed its “non‐classical” structure inside the ZSM‐5 zeolite by
ab initio molecular dynamics simulations and13C solid‐state nuclear magnetic resonance experiments. It is the first time to in situ observe the non‐classical 2NB+without the super acidic environment at ambient temperature, which provides a new strategy to expand the carbocation chemistry.