Abstract Reproductive success is a strong determinant of invasive species success. It is common for studies on invasive species to assess reproduction by measuring size-specific fecundity and scaling this up using population size or densities. Yet, reproductive success is influenced by numerous factors that are not accounted for in such calculations. We examined the influence of several factors on fecundity (clutch size) and egg size in the Asian shore crabHemigrapsus sanguineus, including body size, spatial variation throughout the invaded range, season, fertilization success, brood loss, and diet. We show that all of these factors influence reproduction simultaneously within the invaded North American range of this species, though the relative importance of these different factors varied across sites or sampling times. Our study demonstrates that numerous factors may influence the reproductive success of invasive species and that studies that rely on fecundity measured at a single place and time, or that ignore factors such as offspring quality or brood loss, may provide a skewed picture of reproduction, and thus of potential invasive success. 
                        more » 
                        « less   
                    
                            
                            Indirect costs of reproduction and the tradeoff between offspring size and number: a framework illustrated by fitness costs and benefits of ovarian fluid
                        
                    
    
            Abstract The theory describing the evolution of offspring size often assumes that the production cost per unit volume is the same for small and large offspring. However, this may not be true if indirect costs of reproduction (e.g., material and energetic costs of supporting offspring development) scale disproportionately with offspring size. Here we show how direct and indirect costs of reproduction can be explicitly modeled within the Smith–Fretwell framework and how observations of size-number relationships can thus be used to evaluate indirect costs. We applied this analysis to measures of egg volume and fecundity for over 300 individuals of a coastal fish species and found that the tradeoff was much stronger than the expected inverse (fecundity scaled with volume−1.843). Larger offspring were thus more expensive to produce. For our study species, an important indirect cost was that larger eggs were accompanied by disproportionately more ovarian fluid. Calorimetry and removal experiments were used to further measure both the energetic costs and fitness benefits of ovarian fluid. In addition, we show that indirect costs of reproduction can intensify size-number tradeoffs in a variety of fishes. Indirect costs of reproduction can be large and may therefore play an important role in the evolution of offspring size. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1948975
- PAR ID:
- 10519529
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Evolution
- Volume:
- 78
- Issue:
- 7
- ISSN:
- 0014-3820
- Format(s):
- Medium: X Size: p. 1248-1260
- Size(s):
- p. 1248-1260
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Li_Richter, Xiang-Yi; Jain, Kavita (Ed.)Abstract There is overwhelming evidence that the microbiome can be important to host physiology and fitness. As such, there is interest in and some theoretical work on understanding when hosts and microbiomes (co)evolve so that microbes benefit hosts and hosts favour beneficial microbes. However, the outcome of evolution likely depends on how microbes benefit hosts. Here, we use adaptive dynamics to investigate how host and symbiont evolution depend on whether symbionts increase host lifespan or host reproduction in a simple model of host and symbiont dynamics. In addition, we investigate 2 ways hosts release (and transmit) symbionts: by releasing symbionts steadily during their lifetime or by releasing them at reproduction, potentially increasing symbionts’ chances of infecting the host’s offspring. The former is strict horizontal transmission, whereas the latter is also a form of indirect or “pseudovertical” transmission. Our first key result is that the evolution of symbionts that benefit host fecundity requires pseudovertical transmission, while the evolution of symbionts that benefit host lifespan does not. Furthermore, our second key result is that when investing in host benefits is costly to the free-living symbiont stage, intermediate levels of pseudovertical transmission are needed for selection to favour beneficial symbionts. This is true regardless of fitness effects because release at reproduction increases the free-living symbiont population, which increases competition for hosts. Consequently, hosts could evolve away from traits that favour beneficial symbionts. Generally, our work emphasizes the importance of different forms of vertical transmission and fitness benefits in host, microbiome, and holobiont evolution as highlighted by our prediction that the evolution of fecundity-increasing symbionts requires parent-to-offspring transmission.more » « less
- 
            Abstract Parthenogenetic wasps provide an ideal natural experiment to study the heritability, plasticity, and microevolutionary dynamics of body size. Dinocampus coccinellae (Hymenoptera:Braconidae, Euphorinae) is a solitary, generalist braconid parasitoid wasp that reproduces through thelytokous parthenogenesis, and parasitizes over fifty diverse species of coccinellid ladybeetles worldwide as hosts. Here we designed an experiment with parthenogenetic lines of D. coccinellae presented with three different host ladybeetle species of varying sizes, across multiple generations to investigate heritability, and plasticity of body size measured via a combination of morphometric variables such as thorax width, abdominal width, and wing length in D. coccinellae. We expected positively correlated parent-offspring parasitoid regressions, indicative of heritable size variation, from unilineal (parent and offspring reared on same host species) lines, since these restrict environmental variation in phenotypes. In contrast, because multilineal (parent and offspring reared on different host species) lines would induce phenotypic plasticity of clones reared in varying environments, we expected negatively correlated parent-offspring parasitoid regressions. Our results indicate (1) little heritable variation in body size, (2) strong independence of offspring size on the host environment, (3) small mothers produce larger offspring, and vice versa, independent of host. We then model the evolution of size and host-shifting under a constrained fecundity advantage model of Cope’s Law using a Hidden Markov Model, showing that D. coccinellae likely has fitness advantages to maintain plasticity in body size despite parthenogenetic reproduction.more » « less
- 
            Abstract For many long‐lived taxa, such as trees and corals, older, and larger individuals often have the lowest mortality and highest fecundity. However, climate change‐driven disturbances such as droughts and heatwaves may fundamentally alter typical size‐dependent patterns of mortality and reproduction in these important foundation taxa. Working in Moorea, French Polynesia, we investigated how a marine heatwave in 2019, one of the most intense marine heatwaves at our sites over the past 30 years, drove patterns of coral bleaching and mortality. The marine heatwave drove island‐wide mass coral bleaching that killed up to 76% and 65% of the largest individuals of the two dominant coral genera,PocilloporaandAcropora, respectively. Colonies ofPocilloporaandAcropora≥30 cm diameter were ~3.5× and ~1.3×, respectively, more likely to die than colonies <30‐cm diameter. Typically, annual mortality in these corals is concentrated on the smallest size classes. Yet, this heatwave dramatically reshaped this pattern, with heat stress disproportionately killing larger coral colonies and equalizing annual mortality rates across the size spectrum. This shift in the size‐mortality relationship reduced the overall fecundity of these genera by >60% because big corals are disproportionately important for reproduction on reefs. Additionally, the survivorship of microscopic coral recruits, critical for the recovery of corals following disturbances, declined to 2%, over an order of magnitude lower compared to a year without elevated thermal stress, where 33% of coral recruits survived. While other research has shown that larger corals can bleach more frequently than smaller corals, we show the severe impact this phenomenon can have at the reef‐wide scale. As marine heatwaves become more frequent and intense, disproportionate mortality of the largest, most fecund corals and near‐complete loss of entire cohorts of newly‐settled coral recruits will likely reduce the recovery capacity of these iconic ecosystems.more » « less
- 
            All life forms depend on the conversion of energy into biomass used in growth and reproduction. For unicellular heterotrophs, the energetic cost associated with building a cell scales slightly sublinearly with cell weight. However, observations on multipleDaphniaspecies and numerous other metazoans suggest that although a similar size-specific scaling is retained in multicellular heterotrophs, there is a quantum leap in the energy required to build a replacement soma, presumably owing to the added investment in nonproductive features such as cell adhesion, support tissue, and intercellular communication and transport. Thus, any context-dependent ecological advantages that accompany the evolution of multicellularity come at a high baseline bioenergetic cost. At the phylogenetic level, for both unicellular and multicellular eukaryotes, the energetic expense per unit biomass produced declines with increasing adult size of a species, but there is a countergradient scaling within the developmental trajectories of individual metazoan species, with the cost of biomass production increasing with size. Translation of the results into the universal currency of adenosine triphosphate (ATP) hydrolyses provides insight into the demands on the electron-transport/ATP-synthase machinery per organism and on the minimum doubling times for biomass production imposed by the costs of duplicating the energy-producing infrastructure.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
