skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Adaptive duplication and genetic diversification of protein kinase R contribute to the specificity of bat-virus interactions
Several bat species act as asymptomatic reservoirs for many viruses that are highly pathogenic in other mammals. Here, we have characterized the functional diversification of the protein kinase R (PKR), a major antiviral innate defense system. Our data indicate that PKR has evolved under positive selection and has undergone repeated genomic duplications in bats in contrast to all studied mammals that have a single copy of the gene. Functional testing of the relationship between PKR and poxvirus antagonists revealed how an evolutionary conflict with ancient pathogenic poxviruses has shaped a specific bat host-virus interface. We determined that duplicated PKRs of theMyotisspecies have undergone genetic diversification, allowing them to collectively escape from and enhance the control of DNA and RNA viruses. These findings suggest that viral-driven adaptations in PKR contribute to modern virus-bat interactions and may account for bat-specific immunity.  more » « less
Award ID(s):
2010884
PAR ID:
10519549
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; « less
Publisher / Repository:
American Association for the Advancement of Science
Date Published:
Journal Name:
Science Advances
Volume:
8
Issue:
47
ISSN:
2375-2548
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Kedzierska, Katherine (Ed.)
    Multiple viruses that are highly pathogenic in humans are known to have evolved in bats. How bats tolerate infection with these viruses, however, is poorly understood. As viruses engage in a wide range of interactions with their hosts, it is essential to study bat viruses in a system that resembles their natural environment like bat-derived in vitro cellular models. However, stable and accessible bat cell lines are not widely available for the broader scientific community. Here, we generated in vitro reagents for the Seba’s short-tailed bat (Carollia perspicillata), tested multiple methods of immortalization, and characterized their susceptibility to virus infection and response to immune stimulation. Using pseudotyped virus library and authentic virus infections, we show that theseC. perspicillatacell lines derived from a diverse array of tissues are susceptible to viruses bearing the glycoprotein of numerous orthohantaviruses, including Andes and Hantaan virus and are also susceptible to live hantavirus infection. Furthermore, stimulation with synthetic double-stranded RNA prior to infection with vesicular stomatitis virus and Middle Eastern respiratory syndrome coronavirus induced a protective antiviral response, demonstrating the suitability of our cell lines to study the bat antiviral immune response. Taken together, the approaches outlined here will inform future efforts to develop in vitro tools for virology from non-model organisms and theseC. perspicillatacell lines will enable studies on virus–host interactions in these bats. 
    more » « less
  2. Mukhopadhyay, Suchetana (Ed.)
    ABSTRACT Accumulating data suggest that some bat species host emerging viruses that are highly pathogenic in humans and agricultural animals. Laboratory-based studies have highlighted important adaptations in bat immune systems that allow them to better tolerate viral infections compared to humans. Simultaneously, ecological studies have discovered critical extrinsic factors, such as nutritional stress, that correlate with virus shedding in wild-caught bats. Despite some progress in independently understanding the role of bats as reservoirs of emerging viruses, there remains a significant gap in the molecular understanding of factors that drive virus spillover from bats. Driven by a collective goal of bridging the gap between the fields of bat virology, immunology, and disease ecology, we hosted a satellite symposium at the 2024 American Society for Virology meeting. Bringing together virologists, immunologists, and disease ecologists, we discussed the intrinsic and extrinsic factors such as virus receptor engagement, adaptive immunity, and virus ecology that influence spillover from bat hosts. This article summarizes the topics discussed during the symposium and emphasizes the need for interdisciplinary collaborations and resource sharing. 
    more » « less
  3. Habitat degradation can increase zoonotic disease risks by altering infection dynamics in wildlife and increasing wildlife–human interactions. Bats are an important taxonomic group to consider these effects, because they harbour many relevant zoonotic viruses and have species‐ and context‐dependent responses to degradation that could affect zoonotic virus dynamics. Yet our understanding of the associations between habitat degradation and bat virus prevalence and seroprevalence are limited to a small number of studies, which often differ in the bats or viruses sampled, the study region, and methodology. To develop a broad understanding of the associations between bat viruses and habitat degradation, we conducted an initial phylogenetic meta‐analysis that combines published prevalence and seroprevalence (‘(sero)prevalence') with remote‐sensing habitat degradation data. Our dataset includes 588 unique records of (sero)prevalence across 16 studies, 64 bat species, and five virus families. We quantified the overall strength and direction of the relationship between habitat degradation and bat virus outcomes and tested how this relationship is moderated by the time between habitat degradation and bat sampling and by ecological traits of bat hosts while controlling for phylogenetic non‐independence among bat species. We found no effect of degradation on prevalence overall, although a weak effect may exist when forest loss occurs the year prior to bat sampling. In contrast, we detected a negative but weak association between degradation and seroprevalence overall that was strengthened when forest loss occurred the year prior to bat sampling. No bat traits that we investigated interacted with habitat degradation to impact virus outcomes, suggesting observed trends are independent of these traits. Biases in our initial dataset highlight opportunities for future work; prevalence was highly zero‐inflated, and seroprevalence was dominated byDesmodus rotundusand rabies virus. These findings and subsequent analyses will improve our understanding of how global change affects host–pathogen dynamics. 
    more » « less
  4. Highly pathogenic avian influenza (HPAI) viruses cross species barriers and have the potential to cause pandemics. In North America, HPAI A(H5N1) viruses related to the goose/Guangdong 2.3.4.4b hemagglutinin phylogenetic clade have infected wild birds, poultry, and mammals. Our genomic analysis and epidemiological investigation showed that a reassortment event in wild bird populations preceded a single wild bird–to-cattle transmission episode. The movement of asymptomatic or presymptomatic cattle has likely played a role in the spread of HPAI within the United States dairy herd. Some molecular markers that may lead to changes in transmission efficiency and phenotype were detected at low frequencies. Continued transmission of H5N1 HPAI within dairy cattle increases the risk for infection and subsequent spread of the virus to human populations. 
    more » « less
  5. Pfeifer, Susanne (Ed.)
    Abstract Bats are exceptional among mammals for their powered flight, extended lifespans, and robust immune systems and therefore have been of particular interest in comparative genomics. Using the Oxford Nanopore Technologies long-read platform, we sequenced the genomes of two bat species with key phylogenetic positions, the Jamaican fruit bat (Artibeus jamaicensis) and the Mesoamerican mustached bat (Pteronotus mesoamericanus), and carried out a comprehensive comparative genomic analysis with a diverse collection of bats and other mammals. The high-quality, long-read genome assemblies revealed a contraction of interferon (IFN)-α at the immunity-related type I IFN locus in bats, resulting in a shift in relative IFN-ω and IFN-α copy numbers. Contradicting previous hypotheses of constitutive expression of IFN-α being a feature of the bat immune system, three bat species lost all IFN-α genes. This shift to IFN-ω could contribute to the increased viral tolerance that has made bats a common reservoir for viruses that can be transmitted to humans. Antiviral genes stimulated by type I IFNs also showed evidence of rapid evolution, including a lineage-specific duplication of IFN-induced transmembrane genes and positive selection in IFIT2. In addition, 33 tumor suppressors and 6 DNA-repair genes showed signs of positive selection, perhaps contributing to increased longevity and reduced cancer rates in bats. The robust immune systems of bats rely on both bat-wide and lineage-specific evolution in the immune gene repertoire, suggesting diverse immune strategies. Our study provides new genomic resources for bats and sheds new light on the extraordinary molecular evolution in this critically important group of mammals. 
    more » « less