Summary Olfactory sensory neurons (OSNs) are one of a few neuron types that are generated continuously throughout life in mammals. The persistence of olfactory sensory neurogenesis beyond early development has long been thought to function simply to replace neurons that are lost or damaged through exposure to environmental insults. The possibility that olfactory sensory neurogenesis may also serve an adaptive function has received relatively little consideration, largely due to the assumption that the generation of new OSNs is stochastic with respect to OSN subtype, as defined by the single odorant receptor gene that each neural precursor stochastically chooses for expression out of hundreds of possibilities. Accordingly, the relative birthrates of different OSN subtypes are predicted to be constant and impervious to olfactory experience. This assumption has been called into question, however, by evidence that the birthrates of specific OSN subtypes can be selectively altered by manipulating olfactory experience through olfactory deprivation, enrichment, and conditioning paradigms. Moreover, studies of recovery of the OSN population following injury provide further evidence that olfactory sensory neurogenesis may not be strictly stochastic with respect to subtype. Here we review this evidence and consider mechanistic and functional implications of the prospect that specific olfactory experiences can regulate olfactory sensory neurogenesis rates in a subtype‐selective manner. 
                        more » 
                        « less   
                    
                            
                            In mice, discrete odors can selectively promote the neurogenesis of sensory neuron subtypes that they stimulate
                        
                    
    
            Abstract In mammals, olfactory sensory neurons (OSNs) are born throughout life, presumably solely to replace neurons lostviaturnover or injury. This assumption follows from the hypothesis that olfactory neurogenesis is strictly stochastic with respect to neuron subtype, as defined by the single odorant receptor allele that each neural precursor stochastically chooses out of hundreds of possibilities. This hypothesis is challenged by recent findings that the birthrates of a fraction of subtypes are selectively diminished by olfactory deprivation. These findings raise questions about how, and why, olfactory stimuli are required to promote the neurogenesis of some OSN subtypes, including whether the stimuli are generic (e.g., broadly activating odors or mechanical stimuli) or specific (e.g., discrete odorants). Based on RNA-seq and scRNA-seq analyses, we hypothesized that the neurogenic stimuli are specific odorants that selectively activate the same OSN subtypes whose birthrates are accelerated. In support of this, we have found, using subtype-specific OSN birthdating, that exposure to male and musk odors can accelerate the birthrates of responsive OSNs. Collectively, our findings reveal that certain odor experiences can selectively “amplify” specific OSN subtypes, and that persistent OSN neurogenesis may serve, in part, an adaptive function. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1943528
- PAR ID:
- 10519554
- Publisher / Repository:
- bioRxiv
- Date Published:
- Format(s):
- Medium: X
- Institution:
- bioRxiv
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            The cell surface metalloprotease ADAM17 (a disintegrin and metalloprotease 17) and its binding partners iRhom2 and iRhom1 (inactive Rhomboid-like proteins 1 and 2) modulate cell–cell interactions by mediating the release of membrane proteins such as TNFα (Tumor necrosis factor α) and EGFR (Epidermal growth factor receptor) ligands from the cell surface. Most cell types express both iRhoms, though myeloid cells exclusively express iRhom2, and iRhom1 is the main iRhom in the mouse brain. Here, we report that iRhom2 is uniquely expressed in olfactory sensory neurons (OSNs), highly specialized cells expressing one olfactory receptor (OR) from a repertoire of more than a thousand OR genes in mice. iRhom2-/- mice had no evident morphological defects in the olfactory epithelium (OE), yet RNAseq analysis revealed differential expression of a small subset of ORs. Notably, while the majority of ORs remain unaffected in iRhom2-/- OE, OSNs expressing ORs that are enriched in iRhom2-/- OE showed fewer gene expression changes upon odor environmental changes than the majority of OSNs. Moreover, we discovered an inverse correlation between the expression of iRhom2 compared to OSN activity genes and that odor exposure negatively regulates iRhom2 expression. Given that ORs are specialized G-protein coupled receptors (GPCRs) and many GPCRs activate iRhom2/ADAM17, we investigated if ORs could activate iRhom2/ADAM17. Activation of an olfactory receptor that is ectopically expressed in keratinocytes (OR2AT4) by its agonist Sandalore leads to ERK1/2 phosphorylation, likely via an iRhom2/ADAM17-dependent pathway. Taken together, these findings point to a mechanism by which odor stimulation of OSNs activates iRhom2/ADAM17 catalytic activity, resulting in downstream transcriptional changes to the OR repertoire and activity genes, and driving a negative feedback loop to downregulate iRhom2 expression.more » « less
- 
            Abstract Objective.Elucidating neurological processes in the mammalian brain requires improved methods for imaging and detecting neuronal subtypes. Transgenic mouse models utilizing Cre/lox recombination have been developed to selectively label neuronal subtypes with fluorophores, however, light-scattering attenuation of both excitation light and emission light limits their effective range of detection.Approach. To overcome these limitations, this study investigates the use of a near-infrared fluorophore, iRFP713, for subtype labeling of neurons found within brain regions that are typically inaccessible by optical methods. Towards this goal, a custom photoacoustic (PA) system is developed for detection of iRFP in neurons in brain slices, expressed via Cre/lox, and withinin vitrocell culture.Main results. In this study, a custom system is developed to detect iRFP in neuronal cells both in brain slices andin vitro. Furthermore, this work validates iRFP expression in the brains of transgenic mice and neuronal cell culture.Significance. Combining iRFP with advanced imaging and detection strategies, such as PA microscopy, is critical for expanding the type and variety of neurons that scientists can observe within the mammalian brain.more » « less
- 
            Abstract Neuronal plasticity can vary remarkably in its form and degree across animal species. Adult neurogenesis, namely the capacity to produce new neurons from neural stem cells through adulthood, appears widespread in non-mammalian vertebrates, whereas it is reduced in mammals. A growing body of comparative studies also report variation in the occurrence and activity of neural stem cell niches between mammals, with a general trend of reduction from small-brained to large-brained species. Conversely, recent studies have shown that large-brained mammals host large amounts of neurons expressing typical markers of neurogenesis in the absence of cell division. In layer II of the cerebral cortex, populations of prenatally generated, non-dividing neurons continue to express molecules indicative of immaturity throughout life (cortical immature neurons; cINs). After remaining in a dormant state for a very long time, these cINs retain the potential of differentiating into mature neurons that integrate within the preexisting neural circuits. They are restricted to the paleocortex in small-brained rodents, while extending into the widely expanded neocortex of highly gyrencephalic, large-brained species. The current hypothesis is that these populations of non-newly generated “immature” neurons might represent a reservoir of developmentally plastic cells for mammalian species that are characterized by reduced stem cell-driven adult neurogenesis. This indicates that there may be a trade-off between various forms of plasticity that coexist during brain evolution. This balance may be necessary to maintain a “reservoir of plasticity” in brain regions that have distinct roles in species-specific socioecological adaptations, such as the neocortex and olfactory structures.more » « less
- 
            A mouse’s nose contains over 10 million receptor neurons divided into about 1,000 different types, which detect airborne chemicals – called odorants – that make up smells. Each odorant activates many different receptor types. And each receptor type responds to many different odorants. To identify a smell, the brain must therefore consider the overall pattern of activation across all receptor types. Individual receptor neurons in the mammalian nose live for about 30 days, before new cells replace them. The entire population of odorant receptor neurons turns over every few weeks, even in adults. Studies have shown that some types of these receptor neurons are used more often than others, depending on the species, and are therefore much more abundant. Moreover, the usage patterns of different receptor types can also change when individual animals are exposed to different smells. Teşileanu et al. set out to develop a computer model that can explain these observations. The results revealed that the nose adjusts its odorant receptor neurons to provide the brain with as much information as possible about typical smells in the environment. Because each smell consists of multiple odorants, each odorant is more likely to occur alongside certain others. For example, the odorants that make up the scent of a flower are more likely to occur together than alongside the odorants in diesel. The nose takes advantage of these relationships by adjusting the abundance of the receptor types in line with them. Teşileanu et al. show that exposure to odorants leads to reproducible increases or decreases in different receptor types, depending on what would provide the brain with most information. The number of odorant receptor neurons in the human nose decreases with time. The current findings could help scientists understand how these changes affect our sense of smell as we age. This will require collaboration between experimental and theoretical scientists to measure the odors typical of our environments, and work out how our odorant receptor neurons detect them.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    