Abstract Observed supercell updrafts consistently produce the fastest mid- to upper-tropospheric vertical velocities among all modes of convection. Two hypotheses for this feature are investigated. In the dynamic hypothesis, upward, largely rotationally driven pressure gradient accelerations enhance supercell updrafts relative to other forms of convection. In the thermodynamic hypothesis, supercell updrafts have more low-level inflow than ordinary updrafts because of the large vertical wind shear in supercell environments. This large inflow makes supercell updrafts wider than that of ordinary convection and less susceptible to the deleterious effects of entrainment-driven updraft core dilution on buoyancy. These hypotheses are tested using a large suite of idealized supercell simulations, wherein vertical shear, CAPE, and moisture are systematically varied. Consistent with the thermodynamic hypothesis, storms with the largest storm-relative flow have larger inflow, are wider, have larger buoyancy, and have faster updrafts. Analyses of the vertical momentum forcing along trajectories shows that maximum vertical velocities are often enhanced by dynamic pressure accelerations, but this enhancement is accompanied by larger downward buoyant pressure accelerations than in ordinary convection. Integrated buoyancy along parcel paths is therefore a strong constraint on maximum updraft speeds. Thus, through a combination of processes consistent with the dynamic and thermodynamic hypotheses, supercell updrafts are able to realize a larger percentage of CAPE than ordinary updrafts.
more »
« less
How does vertical wind shear influence updraft characteristics and hydrometeor distributions in supercell thunderstorms?
Abstract Vertical wind shear is known to affect supercell thunderstorms by displacing updraft hydrometeor mass downshear, thereby facilitating the storms’ longevity. Shear also impacts the size of supercell updrafts, with stronger shear leading to wider, less dilute, and stronger updrafts with likely greater hydrometeor production. To more clearly define the role of shear across different vertical layers on hydrometeor concentrations and displacements relative to supercell updrafts, a suite of idealized numerical model simulations of supercells was conducted. Shear magnitudes were systematically varied across the 0–1 km, 1–6 km, and 6–12 km AGL layers while the thermodynamic environment was held fixed. Simulations show that as shear magnitude increases, especially from 1–6 km, updrafts become wider and less dilute with an increase in hydrometeor loading, along with an increase in the low-level precipitation area/rate and total precipitation accumulation. Even with greater updraft hydrometeor loading amid stronger shear, updrafts are more intense in stronger shear simulations due to larger thermal buoyancy owing to wider, less dilute updraft cores. Furthermore, downshear hydrometeor displacements are larger in environments with stronger 1–6 km shear. In contrast, there is relatively less sensitivity of hydrometeor concentrations and displacements to variations in either 0–1 km or 6–12 km shear. Results are consistent across free tropospheric relative humidity sensitivity simulations, which show an increase in updraft size and hydrometeor mass with increasing free tropospheric relative humidity owing to a reduction in entrainment-driven dilution for wider updrafts in moister environments.
more »
« less
- Award ID(s):
- 2149354
- PAR ID:
- 10519559
- Publisher / Repository:
- American Meteorological Society
- Date Published:
- Journal Name:
- Monthly Weather Review
- ISSN:
- 0027-0644
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract This study synthesizes the results of 13 high-resolution simulations of deep convective updrafts forming over idealized terrain using environments observed during the RELAMPAGO and CACTI field projects. Using composite soundings from multiple observed cases, and variations upon them, we explore the sensitivity of updraft properties (e.g., size, buoyancy, and vertical pressure gradient forces) to influences of environmental relative humidity, wind shear, and mesoscale orographic forcing that support or suppress deep convection initiation (CI). Emphasis is placed on differentiating physical processes affecting the development of updrafts (e.g., entrainment-driven dilution of updrafts) in environments typifying observed successful and null (i.e., no CI despite affirmative operational forecasts) CI events. Thermally-induced mesoscale orographic lift favors the production of deep updrafts originating from ∼1–2-km-wide boundary layer thermals. Simulations without terrain forcing required much larger ( ∼5-km-wide) thermals to yield precipitating convection. CI outcome was quite sensitive to environmental relative humidity; updrafts with increased buoyancy, depth, and intensity thrived in otherwise inhospitable environments by simply increasing the free tropospheric relative humidity. This implicates the entrainment of free-tropospheric air into updrafts as a prominent governor of CI, consistent with previous studies. Sensitivity of CI to the environmental wind is manifested by: 1) low-level flow affecting the strength and depth of mesoscale convergence along the terrain, and 2) clouds encountering updraft-suppressing pressure gradient forces while interacting with vertical wind shear in the free-troposphere. Among the ensemble of thermals occurring in each simulation, the widest deep updrafts in each simulation were the most sensitive to environmental influences.more » « less
-
Abstract Limited knowledge exists about ∼100-m-scale precipitation processes within U.S. northeast coastal snowstorms because of a lack of high-resolution observations. We investigate characteristics of microscale updraft regions within the cyclone comma head and their relationships with snowbands, wind shear, frontogenesis, and vertical mass flux using high-spatiotemporal-resolution vertically pointing Ka-band radar measurements, soundings, and reanalysis data for four snowstorms observed at Stony Brook, New York. Updraft regions are defined as contiguous time–height plotted areas with upward Doppler velocity without hydrometeor sedimentation that is equal to or greater than 0.4 m s−1. Most updraft regions in the time–height data occur on a time scale of seconds (<20 s), which is equivalent to spatial scales < 500 m. These small updraft regions within cloud echo occur more than 30% of the time for three of the four cases and 18% for the other case. They are found at all altitudes and can occur with or without frontogenesis and with or without snowbands. The updraft regions with relatively large Doppler spectrum width (>0.4 m s−1) occur more frequently within midlevels of the storms, where there are strong wind shear layers and moist shear instability layers. This suggests that the dominant forcing for the updrafts appears to be turbulence associated with the vertical shear instability. The updraft regions can be responsible for upward mass flux when they are closer together in space and time. The higher values of column mean upward mass flux often occur during snowband periods. Significance StatementSmall-scale (<500 m) upward motions within four snowstorms along the U.S. northeast coast are analyzed for the first time using high-spatiotemporal-resolution millimeter-wavelength cloud radar pointed vertically. The analysis reveals that updrafts appear in the storms regardless of whether snowbands are present or whether there is larger-scale forcing for ascent. The more turbulent and stronger updrafts frequently occur in midlevels of storms associated with instability from vertical shear and contribute to upward mass flux during snowband periods when they are closer together in space and time.more » « less
-
Abstract This research investigates a hypothesis posed by previous authors, which argues that the helical nature of the flow in supercell updrafts makes them more resistant to entrainment than nonsupercellular updrafts because of the suppressed turbulence in purely helical flows. It was further supposed that this entrainment resistance contributes to the steadiness and longevity of supercell updrafts. A series of idealized large-eddy simulations were run to address this idea, wherein the deep-layer shear and hodograph shape were varied, resulting in supercells in the strongly sheared runs, nonsupercells in the weakly sheared runs, and variations in the percentage of streamwise vorticity in updrafts among runs. Fourier energy spectrum analyses show well-developed inertial subranges in all simulations, which suggests that the percentages of streamwise and crosswise vorticity have little effect on turbulence in convective environments. Additional analyses find little evidence of updraft-scale centrifugally stable flow within updrafts, which has also been hypothesized to limit horizontal mass flux across supercell updrafts. Results suggest that supercells do have smaller fractional entrainment rates than nonsupercells, but these differences are consistent with theoretical dependencies of entrainment on updraft width, and with supercells being wider than nonsupercells. Thus, while supercells do experience reduced fractional entrainment rates and entrainment-driven dilution, this advantage is primarily attributable to increased supercell updraft width relative to ordinary convection, and has little to do with updraft helicity and rotation.more » « less
-
Abstract While recent observational studies of intensifying (IN) versus steady-state (SS) hurricanes have noted several differences in their axisymmetric and asymmetric structures, there remain gaps in the characterization of these differences in a fully three-dimensional framework. To address these limitations, this study investigates differences in the shear-relative asymmetric structure between IN and SS hurricanes using airborne Doppler radar data from a dataset covering an extended period of time. Statistics from individual cases show that IN cases are characterized by peak wavenumber-1 ascent concentrated in the upshear-left (USL) quadrant at ∼12-km height, consistent with previous studies. Moderate updrafts (2–6 m s−1) occur more frequently in the downshear eyewall for IN cases than for SS cases, likely leading to a higher frequency of moderate to strong updrafts USL above 9-km height. Composites of IN cases show that low-level outflow from the eye region associated with maximum wavenumber-1 vorticity inside the radius of maximum wind (RMW) in the downshear-left quadrant converges with low-level inflow outside the RMW, forming a stronger local secondary circulation in the downshear eyewall than SS cases. The vigorous eyewall convection of IN cases produces a net vertical mass flux increasing with height up to ∼5 km and then is almost constant up to 10 km, whereas the net vertical mass flux of SS cases decreases with height above 4 km. Strong USL upper-level ascent provides greater potential for the vertical development of the hurricane vortex, which is argued to be favorable for continued intensification in shear environments.more » « less
An official website of the United States government

