skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 1, 2025

Title: Synthesis of 2D layered transition metal (Ni, Co) hydroxides via edge-on condensation
Abstract Layered transition metal hydroxides (LTMHs) with transition metal centers sandwiched between layers of coordinating hydroxide anions have attracted considerable interest for their potential in developing clean energy sources and storage technologies. However, two-dimensional (2D) LTMHs remain largely understudied in terms of physical properties and applications in electronic devices. Here, for the first time we report > 20 μm α-Ni(OH)22D crystals, synthesized from hydrothermal reaction. And an edge-on condensation mechanism assisted with the crystal field geometry is proposed to understand the 2D intra-planar growth of the crystals, which is also testified through series of systematic comparative studies. We also report the successful synthesis of 2D Co(OH)2crystals (> 40 μm) with more irregular shape due to the slightly distorted octahedral geometry of the crystal field. Moreover, the detailed structural characterization of synthesized α-Ni(OH)2are performed. The optical band gap energy is extrapolated as 2.54 eV from optical absorption measurements and the electronic bandgap is measured as 2.52 eV from reflected electrons energy loss spectroscopy (REELS). We further demonstrate its potential as a wide bandgap (WBG) semiconductor for high voltage operation in 2D electronics with a high breakdown strength, 4.77 MV/cm with 4.9 nm thickness. The successful realization of the 2D LTMHs opens the door for future exploration of more fundamental physical properties and device applications.  more » « less
Award ID(s):
2216008
PAR ID:
10519595
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Springer nature
Date Published:
Journal Name:
Scientific Reports
Volume:
14
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We report on growth and electrical properties of α-Ga2O3films prepared by halide vapor phase epitaxy (HVPE) at 500 °C on α-Cr2O3buffers predeposited on sapphire by magnetron sputtering. The α-Cr2O3buffers showed a wide microcathodoluminescence (MCL) peak near 350 nm corresponding to the α-Cr2O3bandgap and a sharp MCL line near 700 nm due to the Cr+intracenter transition. Ohmic contacts to Cr2O3were made with both Ti/Au or Ni, producing linear current–voltage ( I– V) characteristics over a wide temperature range with an activation energy of conductivity of ∼75 meV. The sign of thermoelectric power indicated p-type conductivity of the buffers. Sn-doped, 2- μm-thick α-Ga2O3films prepared on this buffer by HVPE showed donor ionization energies of 0.2–0.25 eV, while undoped films were resistive with the Fermi level pinned at ECof 0.3 eV. The I– V and capacitance–voltage ( C– V) characteristics of Ni Schottky diodes on Sn-doped samples using a Cr2O3buffer indicated the presence of two face-to-face junctions, one between n-Ga2O3and p-Cr2O3, the other due to the Ni Schottky diode with n-Ga2O3. The spectral dependence of the photocurrent measured on the structure showed the presence of three major deep traps with optical ionization thresholds near 1.3, 2, and 2.8 eV. Photoinduced current transient spectroscopy spectra of the structures were dominated by deep traps with an ionization energy of 0.95 eV. These experiments suggest another pathway to obtain p–n heterojunctions in the α-Ga2O3system. 
    more » « less
  2. Mueller matrix spectroscopic ellipsometry is applied to determine anisotropic optical properties for a set of single-crystal rhombohedral structure α-(Al x Ga 1− x ) 2 O 3 thin films (0 [Formula: see text] x [Formula: see text] 1). Samples are grown by plasma-assisted molecular beam epitaxy on m-plane sapphire. A critical-point model is used to render a spectroscopic model dielectric function tensor and to determine direct electronic band-to-band transition parameters, including the direction dependent two lowest-photon energy band-to-band transitions associated with the anisotropic bandgap. We obtain the composition dependence of the direction dependent two lowest band-to-band transitions with separate bandgap bowing parameters associated with the perpendicular ([Formula: see text] = 1.31 eV) and parallel ([Formula: see text] = 1.61 eV) electric field polarization to the lattice c direction. Our density functional theory calculations indicate a transition from indirect to direct characteristics between α-Ga 2 O 3 and α-Al 2 O 3 , respectively, and we identify a switch in band order where the lowest band-to-band transition occurs with polarization perpendicular to c in α-Ga 2 O 3 whereas for α-Al 2 O 3 the lowest transition occurs with polarization parallel to c. We estimate that the change in band order occurs at approximately 40% Al content. Additionally, the characteristic of the lowest energy critical point transition for polarization parallel to c changes from M 1 type in α-Ga 2 O 3 to M 0 type van Hove singularity in α-Al 2 O 3 . 
    more » « less
  3. Abstract Device engineering based on the tunable electronic properties of ternary transition metal dichalcogenides has recently gained widespread research interest. In this work, monolayer ternary telluride core/shell structures are synthesized using a one‐step chemical vapor deposition process with rapid cooling. The core region is the tellurium‐rich WSe2−2xTe2xalloy, while the shell is the tellurium‐poor WSe2−2yTe2yalloy. The bandgap of the material is ≈1.45 eV in the core region and ≈1.57 eV in the shell region. The lateral gradient of the bandgap across the monolayer heterostructure allows for the fabrication of heterogeneous transistors and photodetectors. The difference in work function between the core and shell regions leads to a built‐in electric field at the heterojunction. As a result, heterogeneous transistors demonstrate a unidirectional conduction and strong photovoltaic effect. The bandgap gradient and high mobility of the ternary telluride core/shell structures provide a unique material platform for novel electronic and photonic devices. 
    more » « less
  4. Single crystals of a new transition metal adelite-descloizite-type structure were synthesized using a high temperature (580 °C) high-pressure hydrothermal technique. Single crystal X-ray diffraction and energy dispersive X-ray analysis (EDX) were used to investigate the structure and elemental composition, respectively. SrNi(VO4)(OH) crystallizes in an acentric orthorhombic crystal system in the space group P212121 (no. 19); Z = 4, a = 5.9952(4) Å, b = 7.5844(4) Å, c = 9.2240(5) Å. The structure is comprised of a Ni–O–V framework where Sr2+ ions reside inside the channels. Single-crystal magnetic measurements display a significant anisotropy in both temperature- and field-dependent data. The temperature dependent magnetic measurement shows antiferromagnetic behavior at TN~8 K. Overall, the magnetic properties indicate the presence of competing antiferromagnetic and ferromagnetic interactions of SrNi(VO4)(OH). 
    more » « less
  5. Alloying in two-dimensional (2D) transition metal dichalcogenides (TMD) has allowed bandgap engineering and phase transformation, which provide more flexibility and functionality for electronic and photonic devices. To date, many ternary TMD alloys with homogenous compositions have been synthesized. However, realization of bandgap modulation spatially within a single TMD nanosheet remains largely unexplored. In this work, we demonstrate the synthesis of spatially composition-graded WSe2xTe2-2x flakes using an in situ chemical vapor deposition method. The photoluminescence and Raman spectra line-scanning characterization indicate a spatially graded bandgap, which increases from 1.46 eV (center) to 1.61 eV (edge) within one monolayer flake. Furthermore, the electronic devices based on this spatially graded material exhibit tunable transfer characteristics. 
    more » « less