We study the optical flux and polarization variability of the binary black hole blazar OJ 287 using quasi-simultaneous observations from 2015 to 2023 carried out using telescopes in the USA, Japan, Russia, Crimea, and Bulgaria. This is one of the most extensive quasi-simultaneous optical flux and polarization variability studies of OJ 287. OJ 287 showed large amplitude, ∼3.0 mag flux variability, large changes of ∼37% in degree of polarization, and a large swing of ∼215° in the angle of the electric vector of polarization. During the period of observation, several flares in flux were detected. Those flares are correlated with a rapid increase in the degree of polarization and swings in electric vector of polarization angle. A peculiar behavior of anticorrelation between flux and polarization degree, accompanied by a nearly constant polarization angle, was detected from JD 2,458,156 to JD 2,458,292. We briefly discuss some explanations for the flux and polarization variations observed in OJ 287.
more » « less- Award ID(s):
- 2108622
- PAR ID:
- 10519605
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- American Astronomical Society
- Date Published:
- Journal Name:
- The Astrophysical Journal Letters
- Volume:
- 957
- Issue:
- 1
- ISSN:
- 2041-8205
- Page Range / eLocation ID:
- L11
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Particle acceleration mechanisms in supermassive black hole jets, such as shock acceleration, magnetic reconnection, and turbulence, are expected to have observable signatures in the multiwavelength polarization properties of blazars. The recent launch of the Imaging X-Ray Polarimetry Explorer (IXPE) enables us, for the first time, to use polarization in the X-ray band (2–8 keV) to probe the properties of the jet synchrotron emission in high-synchrotron-peaked BL Lac objects (HSPs). We report the discovery of X-ray linear polarization (degree Π x = 15% ± 2% and electric vector position angle ψ x = 35° ± 4°) from the jet of the HSP Mrk 421 in an average X-ray flux state. At the same time, the degree of polarization at optical, infrared, and millimeter wavelengths was found to be lower by at least a factor of 3. During the IXPE pointing, the X-ray flux of the source increased by a factor of 2.2, while the polarization behavior was consistent with no variability. The higher level of Π x compared to longer wavelengths, and the absence of significant polarization variability, suggest a shock is the most likely X-ray emission site in the jet of Mrk 421 during the observation. The multiwavelength polarization properties are consistent with an energy-stratified electron population, where the particles emitting at longer wavelengths are located farther from the acceleration site, where they experience a more disordered magnetic field.more » « less
-
Abstract We report the first >99% confidence detection of X-ray polarization in BL Lacertae. During a recent X-ray/ γ -ray outburst, a 287 ks observation (2022 November 27–30) was taken using the Imaging X-ray Polarimetry Explorer (IXPE), together with contemporaneous multiwavelength observations from the Neil Gehrels Swift observatory and XMM-Newton in soft X-rays (0.3–10 keV), NuSTAR in hard X-rays (3–70 keV), and optical polarization from the Calar Alto and Perkins Telescope observatories. Our contemporaneous X-ray data suggest that the IXPE energy band is at the crossover between the low- and high-frequency blazar emission humps. The source displays significant variability during the observation, and we measure polarization in three separate time bins. Contemporaneous X-ray spectra allow us to determine the relative contribution from each emission hump. We find >99% confidence X-ray polarization Π 2 – 4 keV = 21.7 − 7.9 + 5.6 % and electric vector polarization angle ψ 2–4keV = −28.°7 ± 8.°7 in the time bin with highest estimated synchrotron flux contribution. We discuss possible implications of our observations, including previous IXPE BL Lacertae pointings, tentatively concluding that synchrotron self-Compton emission dominates over hadronic emission processes during the observed epochs.more » « less
-
Aims. We have performed the first broadband study of Mrk 421 from radio to TeV gamma rays with simultaneous measurements of the X-ray polarization from IXPE.Methods. The data were collected as part of an extensive multiwavelength campaign carried out between May and June 2022 using MAGIC,Fermi -LAT,NuSTAR ,XMM-Newton ,Swift , and several optical and radio telescopes to complement IXPE data.Results. During the IXPE exposures, the measured 0.2–1 TeV flux was close to the quiescent state and ranged from 25% to 50% of the Crab Nebula without intra-night variability. Throughout the campaign, the very high-energy (VHE) and X-ray emission are positively correlated at a 4σ significance level. The IXPE measurements reveal an X-ray polarization degree that is a factor of 2–5 higher than in the optical/radio bands; that implies an energy-stratified jet in which the VHE photons are emitted co-spatially with the X-rays, in the vicinity of a shock front. The June 2022 observations exhibit a rotation of the X-ray polarization angle. Despite no simultaneous VHE coverage being available during a large fraction of the swing, theSwift -XRT monitoring reveals an X-ray flux increase with a clear spectral hardening. This suggests that flares in high synchrotron peaked blazars can be accompanied by a polarization angle rotation, as observed in some flat spectrum radio quasars. Finally, during the polarization angle rotation,NuSTAR data reveal two contiguous spectral hysteresis loops in opposite directions (clockwise and counterclockwise), implying important changes in the particle acceleration efficiency on approximately hour timescales. -
ABSTRACT The project MOMO (Multiwavelength Observations and Modelling of OJ 287) was set up to test predictions of binary supermassive black hole (SMBH) scenarios and to understand disc–jet physics of the blazar OJ 287. After a correction, the precessing binary (PB) SMBH model predicted the next main outburst of OJ 287 in 2022 October, making the outburst well observable and the model testable. We have densely covered this period in our ongoing multifrequency radio, optical, ultraviolet (UV), and X-ray monitoring. The predicted outburst was not detected. Instead, OJ 287 was at low optical–UV emission levels, declining further into November. The predicted thermal bremsstrahlung spectrum was not observed either, at any epoch. Further, applying scaling relations, we estimate an SMBH mass of OJ 287 of 108 M⊙. The latest in a sequence of deep low states that recur every 1–2 yr is used to determine an upper limit on the Eddington ratio and on the accretion-disc luminosity. This limit is at least a factor of 10 lower than required by the PB model with its massive primary SMBH of >1010 M⊙. All these results favour alternative binary SMBH models of OJ 287 that require neither strong orbital precession nor a very large mass of the primary SMBH.
-
ABSTRACT Using stacking of images obtained at different epochs, we studied the variability properties of linear polarization of active galactic nucleus (AGN) jets on parsec-scales. Our sample is drawn from the MOJAVE programme, and consists of 436 AGNs manifesting core-jet morphology and having at least five VLBA observing epochs at 15 GHz from 1996 January through 2019 August, with some additional archival VLBA data reduced by us. We employed a stacking procedure and constructed maps of (i) standard deviation of fractional polarization and electric vector position angle (EVPA) over epochs as the measure of variability and (ii) median polarization degree to quantify typical values in time. The distributions of these values along and across the jet were analysed for the whole sample for the first time. We found that core EVPA variability is typically higher than that of the jet, presumably due to component blending and outflow bends in the core. The BL Lacertae object cores have lower EVPA variability, compared to that of quasars, possibly due to lower Faraday rotation measure, suggesting a stronger ordered magnetic field component. The EVPA becomes more stable down the jet. Most of the sources showing this trend have a time coverage of more than 12 yr and at least 15 epochs. The possible cause could be the increase of stability in the magnetic field direction, reflecting an increase in the fraction of the magnetic field that is ordered. There are no significant optical-class-dependent or spectral-class-dependent relations in the EVPA variability properties in AGN jets.