CENP-A is a histone variant found in high abundance at the centromere in humans. At the centromere, this histone variant replaces the histone H3 found throughout the bulk chromatin. Additionally, the centromere comprises tandem repeats of α-satellite DNA, which CENP-A nucleosomes assemble upon. However, the effect of the DNA sequence on the nucleosome assembly and centromere formation remains poorly understood. Here, we investigated the structure of nucleosomes assembled with the CENP-A variant using Atomic Force Microscopy. We assembled both CENP-A nucleosomes and H3 nucleosomes on a DNA substrate containing an α-satellite motif and characterized their positioning and wrapping efficiency. We also studied CENP-A nucleosomes on the 601-positioning motif and non-specific DNA to compare their relative positioning and stability. CENP-A nucleosomes assembled on α-satellite DNA did not show any positional preference along the substrate, which is similar to both H3 nucleosomes and CENP-A nucleosomes on non-specific DNA. The range of nucleosome wrapping efficiency was narrower on α-satellite DNA compared with non-specific DNA, suggesting a more stable complex. These findings indicate that DNA sequence and histone composition may be two of many factors required for accurate centromere assembly.
more »
« less
The Interaction of NF-κB Transcription Factor with Centromeric Chromatin
Centromeric chromatin is a subset of chromatin structure and governs chromosome segregation. The centromere is composed of both CENP-A nucleosomes (CENP-A(nuc)) and H3 nucleosomes (H3(nuc)) and is enriched with alpha-satellite (alpha-sat) DNA repeats. These CENP-A(nuc) have a different structure than H3(nuc), decreasing the base pairs (bp) of wrapped DNA from 147 bp for H3(nuc) to 121 bp for CENP-A(nuc). All these factors can contribute to centromere function. We investigated the interaction of H3(nuc) and CENP-A(nuc) with NF-kappaB, a crucial transcription factor in regulating immune response and inflammation. We utilized atomic force microscopy (AFM) to characterize complexes of both types of nucleosomes with NF-kappaB. We found that NF-kappaB unravels H3(nuc), removing more than 20 bp of DNA, and that NF-kappaB binds to the nucleosomal core. Similar results were obtained for the truncated variant of NF-kappaB comprised only of the Rel homology domain and missing the transcription activation domain (TAD), suggesting that RelA(TAD) is not critical in unraveling H3(nuc). By contrast, NF-kappaB did not bind to or unravel CENP-A(nuc). These findings with different affinities for two types of nucleosomes to NF-kappaB may have implications for understanding the mechanisms of gene expression in bulk and centromere chromatin.
more »
« less
- Award ID(s):
- 2123637
- PAR ID:
- 10519652
- Publisher / Repository:
- American Chemical Society
- Date Published:
- Journal Name:
- The Journal of Physical Chemistry B
- Volume:
- 128
- Issue:
- 24
- ISSN:
- 1520-6106
- Page Range / eLocation ID:
- 5803 to 5813
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The histone variant CENP-A is the epigenetic determinant for the centromere, where it is interspersed with canonical H3 to form a specialized chromatin structure that nucleates the kinetochore. How nucleosomes at the centromere arrange into higher order structures is unknown. Here we demonstrate that the human CENP-A-interacting protein CENP-N promotes the stacking of CENP-A-containing mononucleosomes and nucleosomal arrays through a previously undefined interaction between the α6 helix of CENP-N with the DNA of a neighboring nucleosome. We describe the cryo-EM structures and biophysical characterization of such CENP-N-mediated nucleosome stacks and nucleosomal arrays and demonstrate that this interaction is responsible for the formation of densely packed chromatin at the centromere in the cell. Our results provide first evidence that CENP-A, together with CENP-N, promotes specific chromatin higher order structure at the centromere.more » « less
-
In eukaryotic nuclei, DNA is wrapped around an octamer of core histones to form nucleosomes. H1 binds to the linker DNA of nucleosome to form the chromatosome, the next structural unit of chromatin. Structural features on individual chromatosomes contribute to chromatin structure, but not fully characterized. In addition to canonical nucleosomes composed of two copies each of histones H2A, H2B, H3, and H4 (H3 nucleosomes), centromeres chromatin contain nucleosomes in which H3 is replaced with its analog CENP-A, changing structural properties of CENP-A nucleosomes. Nothing is known about the interaction of H1 with CENP-A nucleosomes. Here we filled this gap and characterized the interaction of H1 histone with both types of nucleosomes. H1 does bind both types of the nucleosomes forming more compact chromosome particles with elevated affinity to H3 nucleosomes. H1 binding significantly increases the stability of chromatosomes preventing their spontaneous dissociation. In addition to binding to the entry-exit position of the DNA arms identified earlier, H1 is capable of bridging of distant DNA segments. H1 binding leads to the assembly of mononucleosomes in aggregates, stabilized by internucleosome interactions as well as bridging of the DNA arms of chromatosomes. Contribution of these finding to the chromatin structure and functions are discussed.more » « less
-
All eukaryotic genomes are packaged into basic units of DNA wrapped around histone proteins called nucleosomes. The ability of histones to specify a variety of epigenetic states at defined chromatin domains is essential for cell survival. The most distinctive type of chromatin is found at centromeres, which are marked by the centromere-specific histone H3 variant CENP-A. Many of the factors that regulate CENP-A chromatin have been identified; however, our understanding of the mechanisms of centromeric nucleosome assembly, maintenance, and reorganization remains limited. This review discusses recent insights into these processes and draws parallels between centromeric and noncentromeric chromatin assembly mechanisms.more » « less
-
Centromeres are marked by the centromere-specific histone H3 variant CENP-A/CENH3. Throughout the cell cycle, the constitutive centromere-associated network is bound to CENP-A chromatin, but how this protein network modifies CENP-A nucleosome conformations in vivo is unknown. Here, we purify endogenous centromeric chromatin associated with the CENP-C complex across the cell cycle and analyze the structures by single-molecule imaging and biochemical assays. CENP-C complex–bound chromatin was refractory to MNase digestion. The CENP-C complex increased in height throughout the cell cycle culminating in mitosis, and the smaller CENP-C complex corresponds to the dimensions of in vitro reconstituted constitutive centromere-associated network. In addition, we found two distinct CENP-A nucleosomal configurations; the taller variant was associated with the CENP-C complex. Finally, CENP-A mutants partially corrected CENP-C overexpression–induced centromeric transcription and mitotic defects. In all, our data support a working model in which CENP-C is critical in regulating centromere homeostasis by supporting a unique higher order structure of centromeric chromatin and altering the accessibility of the centromeric chromatin fiber for transcriptional machinery.more » « less
An official website of the United States government

