skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, February 13 until 2:00 AM ET on Friday, February 14 due to maintenance. We apologize for the inconvenience.


Title: Photoactivation of Millimeters Thick Liquid Crystal Elastomers with Broadband Visible Light Using Donor–Acceptor Stenhouse Adducts
Abstract

Light‐responsive liquid crystal elastomers (LCEs) are stimuli‐responsive materials that facilitate the conversion of light energy into a mechanical response. In this work, a novel polysiloxane‐based LCE with donor–acceptor Stenhouse adduct (DASA) side‐chains is synthesized using a late‐stage functionalization strategy. It is demonstrated that this approach does not compromise the molecular alignment observed in the traditional Finkelmann method. This easy, single‐batch process provides a robust platform to access well‐aligned, light‐responsive LCE films with thickness ranging from 400 µm to a 14‐layer stack that is 5 mm thick. Upon irradiation with low‐intensity broadband visible light (100–200 mW cm−2), these systems undergo 2D planar actuation and complete bleaching. Conversely, exposure to higher‐intensity visible light induces bending followed by contraction (300 mW cm−2). These processes are repeatable over several cycles. Finally, it is demonstrated how light intensity and the resulting heat generation influences the photothermal stationary state equilibrium of DASA, thereby controlling its photoresponsive properties. This work establishes the groundwork for advancement of LCE‐based actuators beyond thin film and UV‐light reliant systems.

 
more » « less
PAR ID:
10519745
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials
ISSN:
0935-9648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Untethered stimuli‐responsive soft materials with programmed sequential self‐folding are of great interest due to their ability to achieve task‐specific shape transformation with complex final configuration. Here, reversible and sequential self‐folding soft actuators are demonstrated by utilizing a temperature‐responsive nanocomposite hydrogel with different folding speeds but the same chemical composition. By varying the UV light intensity during the photo‐crosslinking of the nanocomposite hydrogel, different types of microstructures can be realized via phase separation mechanisms, which allow to control the folding speeds. The self‐folding structures are fabricated by integrating two dissimilar materials (i.e., a nanocomposite hydrogel and an elastomer) into hinge‐based bilayer structures via extrusion‐based 3D printing. It has been demonstrated that the folding kinetics can be accelerated by more than one order of magnitude due to the phase‐separated microstructure formed by the relatively weaker UV intensity (≈10 mW cm‐2) compared to the one formed by stronger UV intensity (≈100 mW cm‐2). 3D structures with sequential self‐folding capabilities are realized by prescribing actuation speeds and folding angles to specific hinges of the nanocomposite hydrogel. Sequential folding box and self‐locking latch structures are fabricated to demonstrate the ability to capture and hold objects underwater.

     
    more » « less
  2. Abstract

    Liquid crystal elastomers (LCEs) are of interest for applications such as soft robotics and shape‐morphing devices. Among the different actuation mechanisms, light offers advantages such as spatial and local control of actuation via the photothermal effect. However, the unwanted aggregation of the light‐absorbing nanoparticles in the LCE matrix will limit the photothermal response speed, actuation performance, and repeatability. Herein, a near‐infrared‐responsive LCE composite consisting of up to 0.20 wt% poly(ethylene glycol)‐modified gold nanorods (AuNRs) without apparent aggregation is demonstrated. The high Young's modulus, 20.3 MPa, and excellent photothermal performance render repeated and fast actuation of the films (actuation within 5 s and recovery in 2 s) when exposed to 800 nm light at an average output power of ≈1.0 W cm−2, while maintaining a large actuation strain (56%). Further, it is shown that the same sheet of AuNR/LCE film (100 µm thick) can be morphed into different shapes simply by varying the motifs of the photomasks.

     
    more » « less
  3. Abstract

    The ability to exhibit life‐like oscillatory motion fueled by light represents a new capability for stimuli‐responsive materials. Although this capability has been demonstrated in soft materials like polymers, it has never been observed in molecular crystals, which are not generally regarded as dynamic objects. In this work, it is shown that molecular crystalline microwires composed of (Z)‐2‐(3‐(anthracen‐9‐yl)allylidene)malononitrile ((Z)‐DVAM) can be continuously actuated when exposed to a combination of ultraviolet and visible light. The photo‐induced motion mimics the oscillatory behavior of biological flagella and enables propagation of microwires across a surface and through liquids, with translational speeds up to 7 μm s−1. This is the first example of molecular crystals that show complex oscillatory behavior under continuous irradiation. A model that relates the rotation of the transition dipole moment between reversible E→Z photoisomerization to the microscopic torque can qualitatively reproduce how the rotational frequency depends on light intensity and polarization.

     
    more » « less
  4. Abstract

    The ability to exhibit life‐like oscillatory motion fueled by light represents a new capability for stimuli‐responsive materials. Although this capability has been demonstrated in soft materials like polymers, it has never been observed in molecular crystals, which are not generally regarded as dynamic objects. In this work, it is shown that molecular crystalline microwires composed of (Z)‐2‐(3‐(anthracen‐9‐yl)allylidene)malononitrile ((Z)‐DVAM) can be continuously actuated when exposed to a combination of ultraviolet and visible light. The photo‐induced motion mimics the oscillatory behavior of biological flagella and enables propagation of microwires across a surface and through liquids, with translational speeds up to 7 μm s−1. This is the first example of molecular crystals that show complex oscillatory behavior under continuous irradiation. A model that relates the rotation of the transition dipole moment between reversible E→Z photoisomerization to the microscopic torque can qualitatively reproduce how the rotational frequency depends on light intensity and polarization.

     
    more » « less
  5.  
    more » « less