skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Vibrational Spectroscopy and Structural Analysis of V+(C2H6)n Clusters (n = 1–4)
The vibrational structure and binding motifs of vanadium cation-ethane clusters, V(+)(C2H6)n, for n = 1 – 4 are probed using infrared photodissociation spectroscopy in the C-H stretching region (2550 – 3100 cm-1). Comparison of spectra to scaled harmonic frequency spectra obtained using density functional theory suggest that ethane exhibits two primary binding motifs when interacting with the vanadium cation, an end-on 𝜂2 configuration and a side-on configuration. The lower-energy side-on configuration predominates in smaller clusters, but the end-on configuration becomes important for larger clusters as it helps to maintain a roughly square planar geometry about the central vanadium. Proximate C-H bonds exhibit elongation and large red-shifts when compared to bare ethane, particularly in the case of the side-on isomer, which are underestimated by scaled harmonic frequency calculations, demonstrating initial effects of C-H bond activation.  more » « less
Award ID(s):
1856490
PAR ID:
10519878
Author(s) / Creator(s):
;
Publisher / Repository:
ACS
Date Published:
Journal Name:
The Journal of Physical Chemistry A
Volume:
127
Issue:
24
ISSN:
1089-5639
Page Range / eLocation ID:
5091 to 5103
Subject(s) / Keyword(s):
non-covalent interactions C-H activation vibrational spectroscopy
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    N , N ′-Di- tert -butylcarbodiimide, Me 3 CN=C=NCMe 3 , undergoes reductive cleavage in the presence of the Gd II complex, [K(18-crown-6) 2 ][Gd II (N R 2 ) 3 ] ( R = SiMe 3 ), to form a new type of ligand, the tert -butylcyanamide anion, (Me 3 CNCN) − . This new ligand can bind metals with one or two donor atoms as demonstrated by the isolation of a single crystal containing potassium salts of both end-on and side-on bound tert -butylcyanamide anions, (Me 3 CNCN) − . The crystal contains [K(18-crown-6)(H 2 O)][NCNCMe 3 - kN ], in which one ( t BuNCN) − anion is coordinated end-on to potassium ligated by 18-crown-6 and water, as well as [K(18-crown-6)][η 2 -NCNCMe 3 ], in which an 18-crown-6 potassium is coordinated side-on to the terminal N—C linkage. This single crystal also contains one equivalent of 1,3-di- tert -butyl urea, (C 9 H 20 N 2 O), which is involved in hydrogen bonding that may stabilize the whole assembly, namely, aqua( tert -butylcyanamidato)(1,4,7,10,13,16-hexaoxacyclooctadecane)potassium(I)–( tert -butylcyanamidato)(1,4,7,10,13,16-hexaoxacyclooctadecane)potassium(I)– N , N ′-di- tert -butylcarbodiimide (1/1/1) [K(C 5 H 9 N 2 )(C 12 H 24 O 6 )]·[K(C 5 H 9 N 2 )(C 12 H 24 O 6 )(H 2 O)]·C 9 H 20 N 2 . 
    more » « less
  2. Photofragment spectroscopy is used to measure the vibrational spectra of V2(+)(CH4)n (n = 1–4), V3(+)(CH4)n (n = 1–3), and Vx(+)(CH4) (x = 4–8) in the C–H stretching region (2550–3100 cm−1). Spectra are measured by monitoring loss of CH4. The experimental spectra are compared to simulations at the B3LYP+D3/6-311++G(3df,3pd) level of theory to identify the geometry of the ions. Multi-reference configuration interaction with Davidson correction (MRCI+Q) calculations are also carried out on V2(+) and V3(+). The methane binding orientation in V2(+)(CH4)n (n = 1–4) evolves from η3 to η2 as more methane molecules are added. The IR spectra of metal-methane clusters can give information on the structure of metal clusters that may otherwise be hard to obtain from isolated clusters. For example, the V3(+)(CH4)n (n = 1–3) experimental spectra show an additional peak as the second and third methane molecules are added to V3(+), which indicates that the metal atoms are not equivalent. The Vx(+)(CH4) show a larger red shift in the symmetric C–H stretch for larger clusters with x = 5–8 than for the small clusters with x = 2, 3, indicating increased covalency in the interaction of larger vanadium clusters with methane. 
    more » « less
  3. null (Ed.)
    The addition of tert -butyl hydroperoxide ( t BuOOH) to two structurally related Mn II complexes containing N,N -bis(6-methyl-2-pyridylmethyl)ethane-1,2-diamine (6-Me-DPEN) and N,N -bis(6-methyl-2-pyridylmethyl)propane-1,2-diamine (6-Me-DPPN) results in the formation of high-valent bis-oxo complexes, namely di-μ-oxido-bis{[ N , N -bis(6-methyl-2-pyridylmethyl)ethane-1,2-diamine]manganese(II)}( Mn — Mn ) bis(tetraphenylborate) dihydrate, [Mn(C 16 H 22 N 4 ) 2 O 2 ](C 24 H 20 B) 2 ·2H 2 O or {[Mn IV (N 4 (6-Me-DPEN))] 2 ( μ -O) 2 }(2BPh 4 )(2H 2 O) ( 1 ) and di-μ-oxido-bis{[ N , N -bis(6-methyl-2-pyridylmethyl)propane-1,3-diamine]manganese(II)}( Mn — Mn ) bis(tetraphenylborate) diethyl ether disolvate, [Mn(C 17 H 24 N 4 ) 2 O 2 ](C 24 H 20 B) 2 ·2C 4 H 10 O or {[Mn IV (N 4 (6-MeDPPN))] 2 ( μ -O) 2 }(2BPh 4 )(2Et 2 O) ( 2 ). Complexes 1 and 2 both contain the `diamond core' motif found previously in a number of iron, copper, and manganese high-valent bis-oxo compounds. The flexibility in the propyl linker in the ligand scaffold of 2 , as compared to that of the ethyl linker in 1 , results in more elongated Mn—N bonds, as one would expect. The Mn—Mn distances and Mn—O bond lengths support an Mn IV oxidation state assignment for the Mn ions in both 1 and 2 . The angles around the Mn centers are consistent with the local pseudo-octahedral geometry. 
    more » « less
  4. null (Ed.)
    The green compound poly[(tetrahydrofuran)tris[μ-η 5 :η 5 -1-(trimethylsilyl)cyclopentadienyl]caesium(I)ytterbium(II)], [CsYb(C 8 H 13 Si) 3 (C 4 H 8 O)] n or [(THF)Cs(μ-η 5 :η 5 -Cp′) 3 Yb II ] n was synthesized by reduction of a red THF solution of (C 5 H 4 SiMe 3 ) 3 Yb III with excess Cs metal and identified by X-ray diffraction. The compound crystallizes as a two-dimensional array of hexagons with alternating Cs I and Yb II ions at the vertices and cyclopentadienyl groups bridging each edge. This, based off the six-electron cyclopentadienyl rings occupying three coordination positions, gives a formally nine-coordinate tris(cyclopentadienyl) coordination environment to Yb and the Cs is ten-coordinate due to the three cyclopentadienyl rings and a coordinated molecule of THF. The complex comprises layers of Cs 3 Yb 3 hexagons with THF ligands and Me 3 Si groups in between the layers. The Yb—C metrical parameters are consistent with a 4 f 14 Yb II electron configuration. 
    more » « less
  5. null (Ed.)
    Ionic liquids (ILs) exhibit unique properties that have led to their development and widespread use for a variety of applications. Development efforts have generally focused on achieving desired macroscopic properties via tuning of the IL through variation of the cations and anions. Both the macroscopic and microscopic properties of an IL influence its tunability and thus feasibility of use for selected applications. Works geared toward a microscopic understanding of the nature and strength of the intrinsic cation-anion interactions of ILs have been limited to date. Specifically, the intrinsic strength of the cation-anion interactions in ILs is largely unknown. In previous work, we employed threshold collision-induced dissociation (TCID) approaches supported and enhanced by electronic structure calculations to determine the bond dissociation energies (BDEs) and characterize the nature of the cation-anion interactions in a series of four 2:1 clusters of 1-alkyl-3-methylimidazolium cations with the hexafluorophosphate anion, [2C n mim:PF 6 ] + . To examine the effects of the 1-alkyl chain on the structure and energetics of binding, the cation was varied over the series: 1-ethyl-3-methylimidazolium, [C 2 mim] + , 1-butyl-3-methylimidazolium, [C 4 mim] + , 1-hexyl-3-methylimidazolium, [C 6 mim] + , and 1-octyl-3-methylimidazolium, [C 8 mim] + . The variation in the strength of binding among these [2C n mim:PF 6 ] + clusters was found to be similar in magnitude to the average experimental uncertainty in the measurements. To definitively establish an absolute order of binding among these [2C n mim:PF 6 ] + clusters, we extend this work again using TCID and electronic structure theory approaches to include competitive binding studies of three mixed 2:1 clusters of 1-alkyl-3-methylimidazolium cations and the hexafluorophosphate anion, [C n-2 mim:PF 6 :C n mim] + for n = 4, 6, and 8. The absolute BDEs of these mixed [C n-2 mim:PF 6 :C n mim] + clusters as well as the absolute difference in the strength of the intrinsic binding interactions as a function of the cation are determined with significantly improved precision. By combining the thermochemical results of the previous independent and present competitive measurements, the BDEs of the [2C n mim:PF 6 ] + clusters are both more accurately and more precisely determined. Comparisons are made to results for the analogous [2C n mim:BF 4 ] + and [C n-2 mim:PF 6 :C n mim] + clusters previously examined to elucidate the effects of the [PF 6 ] - and [BF 4 ] - anions on the binding. 
    more » « less