skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Title: GRANDMA and HXMT Observations of GRB 221009A: The Standard Luminosity Afterglow of a Hyperluminous Gamma-Ray Burst—In Gedenken an David Alexander Kann
Abstract

Object GRB 221009A is the brightest gamma-ray burst (GRB) detected in more than 50 yr of study. In this paper, we present observations in the X-ray and optical domains obtained by the GRANDMA Collaboration and the Insight Collaboration. We study the optical afterglow with empirical fitting using the GRANDMA+HXMT-LE data sets augmented with data from the literature up to 60 days. We then model numerically using a Bayesian approach, and we find that the GRB afterglow, extinguished by a large dust column, is most likely behind a combination of a large Milky Way dust column and moderate low-metallicity dust in the host galaxy. Using the GRANDMA+HXMT-LE+XRT data set, we find that the simplest model, where the observed afterglow is produced by synchrotron radiation at the forward external shock during the deceleration of a top-hat relativistic jet by a uniform medium, fits the multiwavelength observations only moderately well, with a tension between the observed temporal and spectral evolution. This tension is confirmed when using the augmented data set. We find that the consideration of a jet structure (Gaussian or power law), the inclusion of synchrotron self-Compton emission, or the presence of an underlying supernova do not improve the predictions. Placed in the global context of GRB optical afterglows, we find that the afterglow of GRB 221009A is luminous but not extraordinarily so, highlighting that some aspects of this GRB do not deviate from the global known sample despite its extreme energetics and the peculiar afterglow evolution.

 
more » « less
Award ID(s):
1901296
NSF-PAR ID:
10520141
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publisher / Repository:
IOP
Date Published:
Journal Name:
The Astrophysical Journal Letters
Volume:
948
Issue:
2
ISSN:
2041-8205
Page Range / eLocation ID:
L12
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We report the discovery of the unusually bright long-duration gamma-ray burst (GRB), GRB 221009A, as observed by the Neil Gehrels Swift Observatory (Swift), Monitor of All-sky X-ray Image, and Neutron Star Interior Composition Explorer Mission. This energetic GRB was located relatively nearby ( z = 0.151), allowing for sustained observations of the afterglow. The large X-ray luminosity and low Galactic latitude ( b = 4.°3) make GRB 221009A a powerful probe of dust in the Milky Way. Using echo tomography, we map the line-of-sight dust distribution and find evidence for significant column densities at large distances (≳10 kpc). We present analysis of the light curves and spectra at X-ray and UV–optical wavelengths, and find that the X-ray afterglow of GRB 221009A is more than an order of magnitude brighter at T 0 + 4.5 ks than that from any previous GRB observed by Swift. In its rest frame, GRB 221009A is at the high end of the afterglow luminosity distribution, but not uniquely so. In a simulation of randomly generated bursts, only 1 in 10 4 long GRBs were as energetic as GRB 221009A; such a large E γ ,iso implies a narrow jet structure, but the afterglow light curve is inconsistent with simple top-hat jet models. Using the sample of Swift GRBs with redshifts, we estimate that GRBs as energetic and nearby as GRB 221009A occur at a rate of ≲1 per 1000 yr—making this a truly remarkable opportunity unlikely to be repeated in our lifetime. 
    more » « less
  2. Abstract We present James Webb Space Telescope (JWST) and Hubble Space Telescope (HST) observations of the afterglow of GRB 221009A, the brightest gamma-ray burst (GRB) ever observed. This includes the first mid-IR spectra of any GRB, obtained with JWST/Near Infrared Spectrograph (0.6–5.5 micron) and Mid-Infrared Instrument (5–12 micron), 12 days after the burst. Assuming that the intrinsic spectral slope is a single power law, with F ν ∝ ν − β , we obtain β ≈ 0.35, modified by substantial dust extinction with A V = 4.9. This suggests extinction above the notional Galactic value, possibly due to patchy extinction within the Milky Way or dust in the GRB host galaxy. It further implies that the X-ray and optical/IR regimes are not on the same segment of the synchrotron spectrum of the afterglow. If the cooling break lies between the X-ray and optical/IR, then the temporal decay rates would only match a post-jet-break model, with electron index p < 2, and with the jet expanding into a uniform ISM medium. The shape of the JWST spectrum is near-identical in the optical/near-IR to X-SHOOTER spectroscopy obtained at 0.5 days and to later time observations with HST. The lack of spectral evolution suggests that any accompanying supernova (SN) is either substantially fainter or bluer than SN 1998bw, the proto-type GRB-SN. Our HST observations also reveal a disk-like host galaxy, viewed close to edge-on, that further complicates the isolation of any SN component. The host galaxy appears rather typical among long-GRB hosts and suggests that the extreme properties of GRB 221009A are not directly tied to its galaxy-scale environment. 
    more » « less
  3. Abstract We present the IXPE observation of GRB 221009A, which includes upper limits on the linear polarization degree of both prompt and afterglow emission in the soft X-ray energy band. GRB 221009A is an exceptionally bright gamma-ray burst (GRB) that reached Earth on 2022 October 9 after traveling through the dust of the Milky Way. The Imaging X-ray Polarimetry Explorer (IXPE) pointed at GRB 221009A on October 11 to observe, for the first time, the 2–8 keV X-ray polarization of a GRB afterglow. We set an upper limit to the polarization degree of the afterglow emission of 13.8% at a 99% confidence level. This result provides constraints on the jet opening angle and the viewing angle of the GRB, or alternatively, other properties of the emission region. Additionally, IXPE captured halo-rings of dust-scattered photons that are echoes of the GRB prompt emission. The 99% confidence level upper limit to the prompt polarization degree depends on the background model assumption, and it ranges between ∼55% and ∼82%. This single IXPE pointing provides both the first assessment of X-ray polarization of a GRB afterglow and the first GRB study with polarization observations of both the prompt and afterglow phases. 
    more » « less
  4. ABSTRACT Recently gamma-ray bursts (GRBs) have been detected at very-high-energy (VHE) gamma-rays by imaging atmospheric Cherenkov telescopes, and a two-component jet model has often been invoked to explain multiwavelength data. In this work, multiwavelength afterglow emission from an extremely bright GRB, GRB 221009A, is examined. The isotropic-equivalent gamma-ray energy of this event is among the largest, which suggests that similarly to previous VHE GRBs, the jet opening angle is so small that the collimation-corrected gamma-ray energy is nominal. Afterglow emission from such a narrow jet decays too rapidly, especially if the jet propagates into uniform circumburst material. In the two-component jet model, another wide jet component with a smaller Lorentz factor dominates late-time afterglow emission, and we show that multiwavelength data of GRB 221009A can be explained by narrow and wide jets with opening angles similar to those employed for other VHE GRBs. We also discuss how model degeneracies can be disentangled with observations. 
    more » « less
  5. Abstract GRB 221009A ( z = 0.151) is one of the closest known long γ -ray bursts (GRBs). Its extreme brightness across all electromagnetic wavelengths provides an unprecedented opportunity to study a member of this still-mysterious class of transients in exquisite detail. We present multiwavelength observations of this extraordinary event, spanning 15 orders of magnitude in photon energy from radio to γ -rays. We find that the data can be partially explained by a forward shock (FS) from a highly collimated relativistic jet interacting with a low-density, wind-like medium. Under this model, the jet’s beaming-corrected kinetic energy ( E K ∼ 4 × 10 50 erg) is typical for the GRB population. The radio and millimeter data provide strong limiting constraints on the FS model, but require the presence of an additional emission component. From equipartition arguments, we find that the radio emission is likely produced by a small amount of mass (≲6 × 10 −7 M ⊙ ) moving relativistically (Γ ≳ 9) with a large kinetic energy (≳10 49 erg). However, the temporal evolution of this component does not follow prescriptions for synchrotron radiation from a single power-law distribution of electrons (e.g., in a reverse shock or two-component jet), or a thermal-electron population, perhaps suggesting that one of the standard assumptions of afterglow theory is violated. GRB 221009A will likely remain detectable with radio telescopes for years to come, providing a valuable opportunity to track the full lifecycle of a powerful relativistic jet. 
    more » « less