Large Language Models (LLMs) are often augmented with external contexts, such as those used in retrieval-augmented generation (RAG). However, these contexts can be inaccurate or intentionally misleading, leading to conflicts with the model’s internal knowledge. We argue that robust LLMs should demonstrate situated faithfulness, dynamically calibrating their trust in external information based on their confidence in the internal knowledge and the external context to resolve knowledge conflicts. To benchmark this capability, we evaluate LLMs across several QA datasets, including a newly created dataset featuring in-the-wild incorrect contexts sourced from Reddit posts. We show that when provided with both correct and incorrect contexts, both open-source and proprietary models tend to overly rely on external information, regardless of its factual accuracy. To enhance situated faithfulness, we propose two approaches: Self-Guided Confidence Reasoning (SCR) and Rule-Based Confidence Reasoning (RCR). SCR enables models to self-access the confidence of external information relative to their own internal knowledge to produce the most accurate answer. RCR, in contrast, extracts explicit confidence signals from the LLM and determines the final answer using predefined rules. Our results show that for LLMs with strong reasoning capabilities, such as GPT-4o and GPT-4o mini, SCR outperforms RCR, achieving improvements of up to 24.2% over a direct input augmentation baseline. Conversely, for a smaller model like Llama-3-8B, RCR outperforms SCR. Fine-tuning SCR with our proposed Confidence Reasoning Direct Preference Optimization (CR-DPO) method improves performance on both seen and unseen datasets, yielding an average improvement of 8.9% on Llama-3-8B. In addition to quantitative results, we offer insights into the relative strengths of SCR and RCR. Our findings highlight promising avenues for improving situated faithfulness in LLMs. 
                        more » 
                        « less   
                    
                            
                            Can LLMs Keep a Secret? Testing Privacy Implications of Language Models via Contextual Integrity Theory
                        
                    
    
            Existing efforts on quantifying privacy implications for large language models (LLMs) solely focus on measuring leakage of training data. In this work, we shed light on the often-overlooked interactive settings where an LLM receives information from multiple sources and generates an output to be shared with other entities, creating the potential of exposing sensitive input data in inappropriate contexts. In these scenarios, humans nat- urally uphold privacy by choosing whether or not to disclose information depending on the context. We ask the question “Can LLMs demonstrate an equivalent discernment and reasoning capability when considering privacy in context?” We propose CONFAIDE, a benchmark grounded in the theory of contextual integrity and designed to identify critical weaknesses in the privacy reasoning capabilities of instruction-tuned LLMs. CONFAIDE consists of four tiers, gradually increasing in complexity, with the final tier evaluating contextual privacy reasoning and theory of mind capabilities. Our experiments show that even commercial models such as GPT-4 and ChatGPT reveal private information in contexts that humans would not, 39% and 57% of the time, respectively, highlighting the urgent need for a new direction of privacy-preserving approaches as we demonstrate a larger underlying problem stemmed in the models’ lack of reasoning capabilities. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10520218
- Publisher / Repository:
- International Conference on Learning Representations
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Modern smart buildings and environments rely on sensory infrastructure to capture and process information about their inhabitants. However, it remains challenging to ensure that this infrastructure complies with privacy norms, preferences, and regulations; individuals occupying smart environments are often occupied with their tasks, lack awareness of the surrounding sensing mechanisms, and are non-technical experts. This problem is only exacerbated by the increasing number of sensors being deployed in these environments, as well as services seeking to use their sensory data. As a result, individuals face an unmanageable number of privacy decisions, preventing them from effectively behaving as their own “privacy firewall” for filtering and managing the multitude of personal information flows. These decisions often require qualitative reasoning over privacy regulations, understanding privacy-sensitive contexts, and applying various privacy transformations when necessary We propose the use of Large Language Models (LLMs), which have demonstrated qualitative reasoning over social/legal norms, sensory data, and program synthesis, all of which are necessary for privacy firewalls. We present PrivacyOracle, a prototype system for configuring privacy firewalls on behalf of users using LLMs, enabling automated privacy decisions in smart built environments. Our evaluation shows that PrivacyOracle achieves up tomore » « less
- 
            Neural models, including large language models (LLMs), achieve superior performance on logical reasoning tasks such as question answering. To elicit reasoning capabilities from LLMs, recent works propose using the chain-of-thought (CoT) mechanism to generate both the reasoning chain and the answer, which enhances the model’s capabilities in conducting reasoning. However, due to LLM’s uninterpretable nature and the extreme flexibility of free-form explanations, several challenges remain: such as struggling with inaccurate reasoning, hallucinations, and not aligning with human preferences. In this talk, we will focus on (1) our design of leveraging structured information (that is grounded to the context), for the explainable complex question answering and reasoning; (2) our multi-module interpretable framework for inductive reasoning, which conducts step-wise faithful reasoning with iterative feedback.more » « less
- 
            Long-context LLMs are increasingly in demand for applications such as retrieval-augmented generation. To defray the cost of pretraining LLMs over long contexts, recent work takes an approach of synthetic context extension: fine-tuning LLMs with synthetically generated long-context data in a post-training stage. However, it remains unclear how and why this synthetic context extension imparts abilities for downstream long-context tasks. In this paper, we investigate fine-tuning on synthetic data for three long-context tasks that require retrieval and reasoning. We vary the realism of "needle" concepts to be retrieved and diversity of the surrounding "haystack" context, from using LLMs to construct synthetic documents to using templated relations and creating symbolic datasets. We find that models trained on synthetic data fall short of the real data, but surprisingly, the mismatch can be interpreted and even predicted in terms of a special set of attention heads that are responsible for retrieval over long context, retrieval heads (Wu et al., 2024). The retrieval heads learned on synthetic data have high overlap with retrieval heads learned on real data, and there is a strong correlation between the recall of heads learned and the downstream performance of a model. Furthermore, with attention knockout and activation patching, we mechanistically show that retrieval heads are necessary and explain model performance, although they are not totally sufficient. Our results shed light on how to interpret synthetic data fine-tuning performance and how to approach creating better data for learning real-world capabilities over long contexts.more » « less
- 
            Large Language Models (LLMs), such as ChatGPT and Bard, have revolutionized natural language understanding and generation. They possess deep language comprehension, human-like text generation capabilities, contextual awareness, and robust problem-solving skills, making them invaluable in various domains (e.g., search engines, customer support, translation). In the meantime, LLMs have also gained traction in the security community, revealing security vulnerabilities and showcasing their potential in security-related tasks. This paper explores the intersection of LLMs with security and privacy. Specifically, we investigate how LLMs positively impact security and privacy, potential risks and threats associated with their use, and inherent vulnerabilities within LLMs. Through a comprehensive literature review, the paper categorizes the papers into “The Good” (beneficial LLM applications), “The Bad” (offensive applications), and “The Ugly” (vulnerabilities of LLMs and their defenses). We have some interesting findings. For example, LLMs have proven to enhance code security (code vulnerability detection) and data privacy (data confidentiality protection), outperforming traditional methods. However, they can also be harnessed for various attacks (particularly user-level attacks) due to their human-like reasoning abilities. We have identified areas that require further research efforts. For example, Research on model and parameter extraction attacks is limited and often theoretical, hindered by LLM parameter scale and confidentiality. Safe instruction tuning, a recent development, requires more exploration. We hope that our work can shed light on the LLMs’ potential to both bolster and jeopardize cybersecurity.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    