skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Mapping industry workforce needs to academic curricula – A workforce development effort in model‐based systems engineering
Abstract Model‐based systems engineering (MBSE) is rapidly gaining popularity among U.S. industries. Though industry practitioners and academic researchers have identified several advantages in transitioning to MBSE, several adoption challenges of MBSE in industries, such as insufficient tool knowledge, lack of skilled personnel, and resistance in organizations toward a shift to MBSE, are observed. Attesting to the challenges in industry adoption of MBSE, a previous research study by the authors characterized the adoption challenges as tools‐based, knowledge‐based, cultural, political, and cost‐related, and customer understanding and acceptance of MBSE practices. This study is motivated to explore further and address the challenge of low MBSE tool knowledge and lack of skilled personnel with MBSE knowledge for industry adoption. This paper presents a two‐phased research approach framed by an overarching question of the extent to which the MBSE academic curriculum is aligned with industry workforce requirements. In Phase 1 of the study, we survey industry professionals from Defense, Aerospace, Automotive, and other industry clusters to identify MBSE tools, languages, and concepts preferred by industry professionals in a candidate for hire. This is followed by Phase 2 of the survey targeted at academic institutions with Systems and MBSE programs to analyze the extent to which MBSE curricula reflect industry workforce hiring requirements. Further, we also identify the challenges reported in academic institutions in training the Workforce on MBSE. The contributions of this paper are two‐fold: providing a pathway for academic institutions to align their curricula to MBSE industry workforce requirements and triggering discussion in the broader MBSE community to identify strategies for addressing MBSE adoption challenges and training future model‐based systems engineers.  more » « less
Award ID(s):
2412813
PAR ID:
10520265
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Systems Engineering
Volume:
27
Issue:
4
ISSN:
1098-1241
Format(s):
Medium: X Size: p. 685-698
Size(s):
p. 685-698
Sponsoring Org:
National Science Foundation
More Like this
  1. Model-based systems engineering (MBSE) is being rapidly adopted in U.S. industries across various sectors. While practitioners and academics recognize many benefits of adopting MBSE, industries also report challenges such as limited tool expertise and a shortage of skilled personnel. Highlighting the difficulties in industry adoption of MBSE, prior research by the authors identified challenges such as tool limitations, knowledge gaps, cultural and political barriers, costs, and the level of customer understanding and acceptance of MBSE practices. Additionally, another study by the authors points out a gap between industry demands for MBSE skills in new hires and the current academic training programs. To further assess the MBSE industry’s workforce needs, this paper introduces a two-phase method for the Structured Extraction of MBSE competencies using large language models based on current workforce demands from LinkedIn job postings. Phase 1 involved extracting 1960 job descriptions from LinkedIn using the term “model-based systems engineer.” In phase 2, large language models (LLMs) employing deep transformer architectures were used to transform unstructured text into structured data. An AI agent was used as an autonomous software layer to manage every interaction between the raw dataset from Phase 1 and the LLM. Supported by the analyzed data, a competency framework is proposed that summarizes the tools, technical skills, and soft skills expected of a model-based systems engineer by the industry. The framework is designed to include core competencies shared across all MBSE roles, with specific competencies tailored for aerospace & defense, manufacturing and automotive, and software and IT sectors. 
    more » « less
  2. Academia or workforce development workshops can both increase the plausibility of a streamlined transition from a document-centric approach to MBSE frameworks, and aid the integration of Model-Based Systems Engineering (MBSE) within the current industry and the challenges faced, introducing MBSE concepts, tools, and languages. This paper reports on an online model-based system engineering Bootcamp conducted in collaboration with The University of Texas Rio Grande Valley and The University of Texas at El Paso. The importance of MBSE is emphasized throughout the online Bootcamp to a diverse group of audience i.e., students, faculty, and industry professionals unfamiliar with systems engineering. A set of predefined questions through pre and post Bootcamp surveys aided in determining the perceptions of MBSE and the effectiveness of the Bootcamp in increasing the knowledge of MBSE amongst participants. A positive knowledge gain was observed on the importance of systems modeling and MBSE across students, faculty, and industry personnel participants indicating the effectiveness of the online Bootcamp. A set of open-ended questions were targeted specifically for industry professionals from manufacturing, aerospace, healthcare, transportation, and software domains attending the Bootcamp for capturing the perceived challenges and obstacles according to them for implementing Model-Based Systems Engineering in their organizations. 
    more » « less
  3. Model-Based Systems Engineering (MBSE) supports the development of complex systems through capturing, communicating, and managing system specifications with an emphasis on the use of modeling languages, tools, and methods. It is a well-known fact that varying levels of effort are required to implement MBSE in industries based on the complexity of the systems a given industry is associated with. This paper shares the results of a survey to industry professionals from Defense, Aerospace, Automotive, Consultancy, Software, and IT industry clusters. The research goal is to understand the current state of perception on what MBSE is and the use of MBSE among different industry clusters. The survey analysis includes a comparison of how MBSE is defined, advantages on the use of MBSE, project types, specific life cycle stage when MBSE is applied, and adoption challenges, as reported by the survey participants. The researchers also aim to trigger discussions in the MBSE community for identifying strategies to address MBSE related challenges tailored to a specific industry type. 
    more » « less
  4. Abstract Robotic automation in construction has created the need for new competencies that will enable the workforce to engage with robots safely and effectively. However, differing perceptions between industry professionals and academia make aligning academic programs with industry needs challenging. This study evaluates these perceptions to guide the design of HRC training programs. A three-round Delphi study was conducted separately with panels of industry professionals and academic experts to assess their views on HRC competencies in construction. The findings revealed that both panels identified human–robot interfaces, HRC safety and standards, robot control systems, and construction robot applications as the top five HRC knowledge areas. Industry professionals also emphasized task planning knowledge, while academic experts focused on HRC ethics. Key HRC skills include effective communication, safety management, technical proficiency, and compliance with regulations and standards, with industry professionals prioritizing proficiency in task planning and academics emphasizing human–robot interface proficiency. Both expert panels prioritized teamwork, continuous learning, problem-solving, communication, and adaptability as top-rated HRC abilities. This study contributes to knowledge by defining key HRC competencies and identifying differences in priorities between industry and academia. These insights can guide the development of academic curricula that better align with industry needs, supporting the creation of training programs that equip the workforce with the competencies required for safe and effective robotic collaboration. The study also promotes collaboration between industry and academia, fostering innovation in HRC and robotics in construction. Future research directions are proposed to explore innovative training methods to equip the future workforce with HRC competencies. 
    more » « less
  5. Whitman, Michael E; Mattord, Herbert J.; Hollingsworth, Carole (Ed.)
    This article explores the results of a project aimed at supporting community college students in their academic pursuit of an Associate of Applied Science (AAS) degree in Cybersecurity through mentorship, collaboration, skill preparation, and other activities and touch points to increase students’ sense of belonging and connectedness in the cybersecurity profession. The goal of the project was focused on developing diverse, educated, and skilled cybersecurity personnel for employment within local industry and government to help curtail the current regional cybersecurity workforce gap that is emblematic of the lack of qualified cybersecurity personnel that presently exists nationwide. Emphasis throughout the project was placed on community building so that students felt a part of the cybersecurity community. A project community survey was distributed to students as both a pre-test when they began the project in Year 1 at the start of their cybersecurity coursework, and again as a post-test at the conclusion of Year 2 when they finished their cybersecurity program. Two project cohorts were employed, and the survey questionnaire measured students’ sense of connectedness and level of learning within the project environment. The results showed a marked increase in both constructs from the pre- to post-survey indicating that students felt a greater sense of community as they moved through the project and experienced increased learning through their cybersecurity program. The study concluded that increased feelings of connectedness to the project activities through authentic shared learning experiences promoted belonging and provided social and academic supports to help project students be successful in their cybersecurity academic program and going forward in the in-demand cybersecurity vocation throughout their professional careers. 
    more » « less