skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


This content will become publicly available on March 29, 2025

Title: Photoacoustic image guidance for laser tonsil ablation: approach and initial results
Tonsillectomy, one of the most common surgical procedures worldwide, is often associated with postoperative complications, particularly bleeding. Tonsil laser ablation has been proposed as a safer alternative; however, its adoption has been limited because it can be difficult for a surgeon to visually control the thermal interactions that occur between the laser and the tissue. In this study, we propose to monitor the ablation caused by a CO2 laser on ex-vivo tonsil tissue using photoacoustic imaging. Soft tissue’s unique photoacoustic spectra were used to distinguish between ablated and non-ablated tissue. Our results suggest that photoacoustic imaging is able to visualize necrosis formation and calculate the necrotic extent, offering the potential for improved tonsil laser ablation outcomes.  more » « less
Award ID(s):
2237011
PAR ID:
10520321
Author(s) / Creator(s):
; ; ; ; ;
Editor(s):
Rettmann, Maryam E; Siewerdsen, Jeffrey H
Publisher / Repository:
SPIE
Date Published:
ISBN:
9781510671607
Page Range / eLocation ID:
44
Format(s):
Medium: X
Location:
San Diego, United States
Sponsoring Org:
National Science Foundation
More Like this
  1. Tissue development requires local and long-distance communication between cells. Cell ablation experiments have provided critical insights into the functions of specific cell types and the tissue surrounding the dead cells. In theDrosophilaneuromuscular system, ablation of motor neurons and muscles has revealed the roles of the ablated cells in axon pathfinding and circuit wiring. For example, when muscles are denervated due to laser ablation of their motor neuron inputs, they receive ectopic innervation from neighboring motor neurons. Here, we describe two methods of specific cell ablation. The first is a genetic ablation approach that usesGAL4(ideally expressed in a small subset of cells) to drive expression of cell death genesreaperandhead involution defective. The second method relies on reactive oxygen species produced by light activation of theArabidopsis-derived Singlet Oxygen Generator, miniSOG2, expressed in a subset of cells. For the latter, the precision stems from both theGAL4and the restricting of the blue-light stimulation area. 
    more » « less
  2. Shock–bubble interactions (SBIs) are important across a wide range of physical systems. In inertial confinement fusion, interactions between laser-driven shocks and micro-voids in both ablators and foam targets generate instabilities that are a major obstacle in achieving ignition. Experiments imaging the collapse of such voids at high energy densities (HED) are constrained by spatial and temporal resolution, making simulations a vital tool in understanding these systems. In this study, we benchmark several radiation and thermal transport models in the xRAGE hydrodynamic code against experimental images of a collapsing mesoscale void during the passage of a 300 GPa shock. We also quantitatively examine the role of transport physics in the evolution of the SBI. This allows us to understand the dynamics of the interaction at timescales shorter than experimental imaging framerates. We find that all radiation models examined reproduce empirical shock velocities within experimental error. Radiation transport is found to reduce shock pressures by providing an additional energy pathway in the ablation region, but this effect is small (∼1% of total shock pressure). Employing a flux-limited Spitzer model for heat conduction, we find that flux limiters between 0.03 and 0.10 produce agreement with experimental velocities, suggesting that the system is well-within the Spitzer regime. Higher heat conduction is found to lower temperatures in the ablated plasma and to prevent secondary shocks at the ablation front, resulting in weaker primary shocks. Finally, we confirm that the SBI-driven instabilities observed in the HED regime are baroclinically driven, as in the low energy case. 
    more » « less
  3. Fluorescence and photoacoustic imaging techniques offer valuable insights into cell- and tissue-level processes. However, these optical imaging modalities are limited by scattering and absorption in tissue, resulting in the low-depth penetration of imaging. Contrast-enhanced imaging in the near-infrared window improves imaging penetration by taking advantage of reduced autofluorescence and scattering effects. Current contrast agents for fluorescence and photoacoustic imaging face several limitations from photostability and targeting specificity, highlighting the need for a novel imaging probe development. This review covers a broad range of near-infrared fluorescent and photoacoustic contrast agents, including organic dyes, polymers, and metallic nanostructures, focusing on their optical properties and applications in cellular and animal imaging. Similarly, we explore encapsulation and functionalization technologies toward building targeted, nanoscale imaging probes. Bioimaging applications such as angiography, tumor imaging, and the tracking of specific cell types are discussed. This review sheds light on recent advancements in fluorescent and photoacoustic nanoprobes in the near-infrared window. It serves as a valuable resource for researchers working in fields of biomedical imaging and nanotechnology, facilitating the development of innovative nanoprobes for improved diagnostic approaches in preclinical healthcare. 
    more » « less
  4. Laser ablation inductively-coupled plasma mass spectrometry (LA-ICP-MS) imaging and matrix assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI) are complementary methods that measure distributions of elements and biomolecules in tissue sections. Quantitative correlations of the information provided by these two imaging modalities requires that the datasets be registered in the same coordinate system, allowing for pixel-by-pixel comparisons. We describe here a computational workflow written in Python that accomplishes this registration, even for adjacent tissue sections, with accuracies within ±50 μm. The value of this registration process is demonstrated by correlating images of tissue sections from mice injected with gold nanomaterial drug delivery systems. Quantitative correlations of the nanomaterial delivery vehicle, as detected by LA-ICP-MS imaging, with biochemical changes, as detected by MALDI-MSI, provide deeper insight into how nanomaterial delivery systems influence lipid biochemistry in tissues. Moreover, the registration process allows the more precise images associated with LA-ICP-MS imaging to be leveraged to achieve improved segmentation in MALDI-MS images, resulting in the identification of lipids that are most associated with different sub-organ regions in tissues. 
    more » « less
  5. Trapped-ion quantum information processing may benefit from qubits encoded in isotopes that are practically available in only small quantities, e.g., due to low natural abundance or radioactivity. Laser ablation provides a method of controllably liberating neutral atoms or ions from low-volume targets, but energetic ablation products can be difficult to confine in the small ion-electrode distance, micron-scale microfabricated traps amenable to high-speed, high-fidelity manipulation of ion arrays. Here, we investigate ablation-based ion loading into surface-electrode traps of different sizes to test a model describing ion loading probability as a function of effective trap volume and other trap parameters. We characterize loading of ablated barium from a metallic source in two cryogenic surface-electrode traps with 730 and 50 μm ion-electrode distances. Our loading rate agrees with a predictive analytical model, providing insight for the confinement of limited-quantity species of interest for quantum computing, simulation, and sensing. 
    more » « less