Abstract Recent advances in spatial and remote sensing technology have led to new methods in archaeological site identification and reconstruction, allowing archaeologists to investigate landscapes and sites on multiple scales. These remotely conducted surveys create virtual cultural landscapes and seascapes that archaeologists and the public interact with and experience, often better than traditional maps. Our study examines landscape reconstruction and archaeological site classifications from a phenomenological and human behavioural ecology (HBE) perspective. HBE aims to reconstruct how humans interacted with these places as part of their active and passive decision making. Through temporal reconstructions, archaeologists and others can experience and interpret past landscapes and subtle changes in cultural land‐ and seascapes. Here, we evaluate the use of remotely sensed data (lidar, satellite imagery, sonar, radar, etc.) for developing virtual cultural landscapes while also incorporating Indigenous perspectives. Our study compares two vastly different landscapes and perspectives: a seascape in coastal Alaska, USA, and a neotropical jungle in Belize, Central America. By incorporating ethnographic accounts, oral histories, Indigenous traditional knowledge and community engagement, archaeologists can develop new tools to understand decisions made in the past, especially pertaining to settlement selection and resource procurement. These virtual reconstructions become cognitive images of a possible place that the observer experiences. Virtual cultural landscapes allow archaeologists to reproduce landscapes that may otherwise be invisible and present them to different publics. These processes elucidate how landscapes changed over time based on human behaviours while simultaneously allowing archaeologists to engage with Indigenous communities and the public in the protection of prehistoric and historic sites and sacred spaces through cultural heritage management.
more »
« less
Cultural-ecosystem resilience is vital yet under-considered in coastal restoration
Abstract As large areas of the Mississippi River Delta (MRD) of the USA disappear into the sea, present-day communities and cultural resources are lost. While the land loss may be readily quantified, describing the impact of cultural losses is less straightforward because cultural elements are frequently less tangible and difficult to map, identify, and categorize. The elision of cultural components of landscapes and ecosystems is evident in restoration practices and policies, although numerous scholars have identified the interlinked processes of culture and ecology as critical to rebuilding healthy and resilient environments. We define and measure cultural-ecosystem resilience (CER) in the Mississippi River Delta through analyses of Indigenous oral histories, mound-building practices and settlement patterns, and the persistence and reuse of archaeological sites. CER describes a system containing resilient properties embedded in human-natural settings including river deltas that may manifest in oral cultural traditions, architecture, and the selection of habitable environments. Our interdisciplinary approach demonstrates the role of human-modified landscapes in generating resilience for past and present coastal communities and highlights the importance of consulting records of historic and modern Indigenous traditions in shaping sustainable landscape-management strategies. Results show that archaeological earthen and shell mounds made by Native American Gulf Coast and MRD communities have been persistent features that endured for centuries and are sited in regions of high multicultural value within the dynamic delta. Yet, we document the rapid 20th-century loss of mounds due to coastal erosion, industry, and other human land-use practices. Present-day and future coastal land loss endangers what remains of these keystone features and thus lowers the resilience of modern Mississippi River Delta communities.
more »
« less
- Award ID(s):
- 2052930
- PAR ID:
- 10520359
- Publisher / Repository:
- Nature
- Date Published:
- Journal Name:
- Humanities and Social Sciences Communications
- Volume:
- 10
- Issue:
- 1
- ISSN:
- 2662-9992
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Archaeological and paleoecological evidence shows that by 10,000 BCE, all human societies employed varying degrees of ecologically transformative land use practices, including burning, hunting, species propagation, domestication, cultivation, and others that have left long-term legacies across the terrestrial biosphere. Yet, a lingering paradigm among natural scientists, conservationists, and policymakers is that human transformation of terrestrial nature is mostly recent and inherently destructive. Here, we use the most up-to-date, spatially explicit global reconstruction of historical human populations and land use to show that this paradigm is likely wrong. Even 12,000 y ago, nearly three quarters of Earth’s land was inhabited and therefore shaped by human societies, including more than 95% of temperate and 90% of tropical woodlands. Lands now characterized as “natural,” “intact,” and “wild” generally exhibit long histories of use, as do protected areas and Indigenous lands, and current global patterns of vertebrate species richness and key biodiversity areas are more strongly associated with past patterns of land use than with present ones in regional landscapes now characterized as natural. The current biodiversity crisis can seldom be explained by the loss of uninhabited wildlands, resulting instead from the appropriation, colonization, and intensifying use of the biodiverse cultural landscapes long shaped and sustained by prior societies. Recognizing this deep cultural connection with biodiversity will therefore be essential to resolve the crisis.more » « less
-
Clark, G. (Ed.)Archaeologists interested in the evolution of anthropogenic landscapes have productively adopted Niche Construction Theory (NCT), in order to assess long-term legacies of human-environment interactions. Applications of NCT have especially been used to elucidate co-evolutionary dynamics in agricultural and pastoral systems. Meanwhile, foraging and/or highly mobile small-scale communities, often thought of as less intensive in terms of land-use than agropastoral economies, have received less theoretical and analytical attention from a landscape perspective. Here we address this lacuna by contributing a novel remote sensing approach for investigating legacies of human-environment interaction on landscapes that have a long history of co-evolution with highly mobile foraging communities. Our study is centered on coastal southwest Madagascar, a region inhabited by foraging and fishing communities for close to two millennia. Despite significant environmental changes in southwest Madagascar’s environment following human settlement, including a wave of faunal extinctions, little is known about the scale, pace and nature of anthropogenic landscape modification. Archaeological deposits in this area generally bear ephemeral traces of past human activity and do not exhibit readily visible signatures of intensive land-use and landscape modification (e.g., agricultural modifications, monumental architecture, etc.). In this paper we use high-resolution satellite imagery and vegetative indices to reveal a legacy of human-landscape co-evolution by comparing the characteristics – vegetative productivity and geochemical properties – of archaeological sites to those of locations with no documented archaeological materials. Then, we use a random forest (RF) algorithm and spatial statistics to quantify the extent of archaeological activity and use this analysis to contextualize modern-day human-environment dynamics. Our results demonstrate that coastal foraging communities in southwest Madagascar over the past 1,000 years have extensively altered the landscape. Our study thus expands the temporal and spatial scales at which we can evaluate human-environment dynamics on Madagascar, providing new opportunities to study early periods of the island’s human history when mobile foraging communities were the dominant drivers of landscape change.more » « less
-
Although shell middens and mounds often occupy the same intertidal spaces as coastal wetlands, biophysical interactions between these cultural features and wetlands are under-investigated. To this end, our geoarchaeological and zooarchaeological research at three coastal archaeological sites within the Tampa Bay Estuary, USA, sought to understand the interactions between shell-bearing sites, sea-level rise, storms, and migrating wetland habitats. Percussion core transects document the accretion of mangrove peat atop intact shell midden, illustrating the ability of mangrove forests to encroach shell midden and preserve cultural material below. Landward wetland deposits are thicker and muddier than those along the seaward margin of the sites, suggesting that shell-bearing sites attenuate wave energy much like other shoreline stabilization structures. Differences in sedimentology, stratigraphy, and invertebrate species compositions highlight the variability in storm impacts between sites. Storm-driven depositional events are identified by medium-to-fine sand beds with high densities of fragmented shell and small intertidal zone snails. Geospatial analyses indicate that wetland encroachment is already occurring at 247 archaeological sites within the Tampa Bay Estuary. Approximately 100 additional archaeological sites currently located in upland habitats may provide topographic relief for migrating coastal wetlands in the future. We contend that shell middens and mounds constructed by Indigenous peoples are important components within estuarine mosaics, as they have been for millennia. We advocate for further collaboration between archaeologists and estuary managers and the inclusion of descendant communities to co-manage the future of their past.more » « less
-
Abstract River deltas all over the world are sinking beneath sea-level rise, causing significant threats to natural and social systems. This is due to the combined effects of anthropogenic changes to sediment supply and river flow, subsidence, and sea-level rise, posing an immediate threat to the 500–1,000 million residents, many in megacities that live on deltaic coasts. The Mississippi River Deltaic Plain (MRDP) provides examples for many of the functions and feedbacks, regarding how human river management has impacted source-sink processes in coastal deltaic basins, resulting in human settlements more at risk to coastal storms. The survival of human settlement on the MRDP is arguably coupled to a shifting mass balance between a deltaic landscape occupied by either land built by the Mississippi River or water occupied by the Gulf of Mexico. We developed an approach to compare 50 % L:W isopleths (L:W is ratio of land to water) across the Atchafalaya and Terrebonne Basins to test landscape behavior over the last six decades to measure delta instability in coastal deltaic basins as a function of reduced sediment supply from river flooding. The Atchafalaya Basin, with continued sediment delivery, compared to Terrebonne Basin, with reduced river inputs, allow us to test assumptions of how coastal deltaic basins respond to river management over the last 75 years by analyzing landward migration rate of 50 % L:W isopleths between 1932 and 2010. The average landward migration for Terrebonne Basin was nearly 17,000 m (17 km) compared to only 22 m in Atchafalaya Basin over the last 78 years (p\0.001), resulting in migration rates of 218 m/year (0.22 km/year) and\0.5 m/year, respectively. In addition, freshwater vegetation expanded in Atchafalaya Basin since 1949 compared to migration of intermediate and brackish marshes landward in the Terrebonne Basin. Changes in salt marsh vegetation patterns were very distinct in these two basins with gain of 25 % in the Terrebonne Basin compared to 90 % decrease in the Atchafalaya Basin since 1949. These shifts in vegetation types as L:W ratio decreases with reduced sediment input and increase in salinity also coincide with an increase in wind fetch in Terrebonne Bay. In the upper Terrebonne Bay, where the largest landward migration of the 50 % L:W ratio isopleth occurred, we estimate that the wave power has increased by 50–100 % from 1932 to 2010, as the bathymetric and topographic conditions changed, and increase in maximum storm-surge height also increased owing to the landward migration of the L:W ratio isopleth. We argue that this balance of land relative to water in this delta provides a much clearer understanding of increased flood risk from tropical cyclones rather than just estimates of areal land loss. We describe how coastal deltaic basins of the MRDP can be used as experimental landscapes to provide insights into how varying degrees of sediment delivery to coastal deltaic floodplains change flooding risks of a sinking delta using landward migrations of 50 % L:W isopleths. The nonlinear response of migrating L:W isopleths as wind fetch increases is a critical feedback effect that should influence human river-management decisions in deltaic coast. Changes in land area alone do not capture how corresponding landscape degradation and increased water area can lead to exponential increase in flood risk to human populations in low-lying coastal regions. Reduced land formation in coastal deltaic basins (measured by changes in the land:water ratio) can contribute significantly to increasing flood risks by removing the negative feedback of wetlands on wave and storm-surge that occur during extreme weather events. Increased flood risks will promote population migration as human risks associated with living in a deltaic landscape increase, as land is submerged and coastal inundation threats rise. These system linkages in dynamic deltaic coasts define a balance of river management and human settlement dependent on a certain level of land area within coastal deltaic basins (L).more » « less
An official website of the United States government

