skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Opportunities to Interrupt Transmission of Enteropathogens of Poultry Origin in Maputo, Mozambique: A Transmission Model Analysis
Background: The burden of diarrheal diseases remains high among children in low-income countries. Enteropathogens are challenging to control because they are transmitted via multiple pathways. Chickens are an important animal protein source, but live chickens and their products are often highly contaminated with enteropathogens. Objectives: We conducted this study to a) understand the contribution of multiple transmission pathways to the force of infection of Campylobacter spp. and nontyphoidal Salmonella spp., b) quantify the potential impact of reducing each pathway on human infection, and c) quantify hypothesized pathway reduction from the context of Maputo, Mozambique. Methods: We developed transmission models for Campylobacter and Salmonella that captured person-to-person, water-to-person, food-to-person, soil-to-person, animal-to-person, and all-other-sources-to-person in an urban, low-income setting in Mozambique. We calibrated these models using prevalence data from Maputo, Mozambique and estimates of attributable fraction of transmission pathways for the region. We simulated the prevalence of human infection after reducing transmission through each pathway. Results: Simulation results indicated that if foodborne transmission were reduced by 90%, the prevalence of Campylobacter and Salmonella infection would decline by [52.2%; 95% credible interval (CrI): 39.7, 63.8] and (46.9%; 95% CrI: 39, 55.4), respectively. Interruption of any other pathway did not have a substantial impact. Combined with survey and microbiology data, if contamination of broiler chicken meat at informal markets in Maputo could be reduced by 90%, the total infection of Campylobacter and Salmonella could be reduced by 21% (16-26%) and 12% (10-13%), respectively. Discussion: Our transmission models showed that the foodborne transmission has to be reduced to control enteropathogen infections in our study site, and likely in other similar contexts, but mitigation of this transmission pathway has not received sufficient attention. Our model can serve as a tool to identify effective mitigation opportunities to control zoonotic enteropathogens.  more » « less
Award ID(s):
1853032
PAR ID:
10520415
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Environmental Health Perspectives
Date Published:
Journal Name:
Environmental Health Perspectives
Volume:
131
Issue:
11
ISSN:
0091-6765
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Lau, Eric HY (Ed.)
    Randomized controlled trials (RCTs) evaluate hypotheses in specific contexts and are often considered the gold standard of evidence for infectious disease interventions, but their results cannot immediately generalize to other contexts (e.g., different populations, interventions, or disease burdens). Mechanistic models are one approach to generalizing findings between contexts, but infectious disease transmission models (IDTMs) are not immediately suited for analyzing RCTs, since they often rely on time-series surveillance data. We developed an IDTM framework to explain relative risk outcomes of an infectious disease RCT and applied it to a water, sanitation, and hygiene (WASH) RCT. This model can generalize the RCT results to other contexts and conditions. We developed this compartmental IDTM framework to account for key WASH RCT factors: i) transmission across multiple environmental pathways, ii) multiple interventions applied individually and in combination, iii) adherence to interventions or preexisting conditions, and iv) the impact of individuals not enrolled in the study. We employed a hybrid sampling and estimation framework to obtain posterior estimates of mechanistic parameter sets consistent with empirical outcomes. We illustrated our model using WASH Benefits Bangladesh RCT data (n = 17,187). Our model reproduced reported diarrheal prevalence in this RCT. The baseline estimate of the basic reproduction number R 0 for the control arm (1.10, 95% CrI: 1.07, 1.16) corresponded to an endemic prevalence of 9.5% (95% CrI: 7.4, 13.7%) in the absence of interventions or preexisting WASH conditions. No single pathway was likely able to sustain transmission: pathway-specific R 0 s for water, fomites, and all other pathways were 0.42 (95% CrI: 0.03, 0.97), 0.20 (95% CrI: 0.02, 0.59), and 0.48 (95% CrI: 0.02, 0.94), respectively. An IDTM approach to evaluating RCTs can complement RCT analysis by providing a rigorous framework for generating data-driven hypotheses that explain trial findings, particularly unexpected null results, opening up existing data to deeper epidemiological understanding. 
    more » « less
  2. Abstract BackgroundInfections with nontyphoidalSalmonellacause an estimated 19,336 hospitalizations each year in the United States. Sources of infection can vary by state and include animal and plant-based foods, as well as environmental reservoirs. Several studies have recognized the importance of increased ambient temperature and precipitation in the spread and persistence ofSalmonellain soil and food. However, the impact of extreme weather events onSalmonellainfection rates among the most prevalent serovars, has not been fully evaluated across distinct U.S. regions. MethodsTo address this knowledge gap, we obtainedSalmonellacase data forS.Enteriditis,S.Typhimurium,S.Newport, andS.Javiana (2004-2014; n = 32,951) from the Foodborne Diseases Active Surveillance Network (FoodNet), and weather data from the National Climatic Data Center (1960-2014). Extreme heat and precipitation events for the study period (2004-2014) were identified using location and calendar day specific 95thpercentile thresholds derived using a 30-year baseline (1960-1989). Negative binomial generalized estimating equations were used to evaluate the association between exposure to extreme events and salmonellosis rates. ResultsWe observed that extreme heat exposure was associated with increased rates of infection withS.Newport in Maryland (Incidence Rate Ratio (IRR): 1.07, 95% Confidence Interval (CI): 1.01, 1.14), and Tennessee (IRR: 1.06, 95% CI: 1.04, 1.09), both FoodNet sites with high densities of animal feeding operations (e.g., broiler chickens and cattle). Extreme precipitation events were also associated with increased rates ofS.Javiana infections, by 22% in Connecticut (IRR: 1.22, 95% CI: 1.10, 1.35) and by 5% in Georgia (IRR: 1.05, 95% CI: 1.01, 1.08), respectively. In addition, there was an 11% (IRR: 1.11, 95% CI: 1.04-1.18) increased rate ofS. Newport infections in Maryland associated with extreme precipitation events. ConclusionsOverall, our study suggests a stronger association between extreme precipitation events, compared to extreme heat, and salmonellosis across multiple U.S. regions. In addition, the rates of infection withSalmonellaserovars that persist in environmental or plant-based reservoirs, such asS.Javiana andS.Newport, appear to be of particular significance regarding increased heat and rainfall events. 
    more » « less
  3. Abstract Recent foodborne illness outbreaks have heightened pressures on growers to deter wildlife from farms, jeopardizing conservation efforts. However, it remains unclear which species, particularly birds, pose the greatest risk to food safety. Using >11,000 pathogen tests and 1565 bird surveys covering 139 bird species from across the western United States, we examined the importance of 11 traits in mediating wild bird risk to food safety. We tested whether traits associated with pathogen exposure (e.g., habitat associations, movement, and foraging strategy) and pace‐of‐life (clutch size and generation length) mediated foodborne pathogen prevalence and proclivities to enter farm fields and defecate on crops.Campylobacterspp. were the most prevalent enteric pathogen (8.0%), whileSalmonellaand Shiga‐toxin producingEscherichia coli(STEC) were rare (0.46% and 0.22% prevalence, respectively). We found that several traits related to pathogen exposure predicted pathogen prevalence. Specifically,Campylobacterand STEC‐associated virulence genes were more often detected in species associated with cattle feedlots and bird feeders, respectively.Campylobacterwas also more prevalent in species that consumed plants and had longer generation lengths. We found that species associated with feedlots were more likely to enter fields and defecate on crops. Our results indicated that canopy‐foraging insectivores were less likely to deposit foodborne pathogens on crops, suggesting growers may be able to promote pest‐eating birds and birds of conservation concern (e.g., via nest boxes) without necessarily compromising food safety. As such, promoting insectivorous birds may represent a win‐win‐win for bird conservation, crop production, and food safety. Collectively, our results suggest that separating crop production from livestock farming may be the best way to lower food safety risks from birds. More broadly, our trait‐based framework suggests a path forward for co‐managing wildlife conservation and food safety risks in farmlands by providing a strategy for holistically evaluating the food safety risks of wild animals, including under‐studied species. 
    more » « less
  4. Abstract ObjectivesUnderstanding disease transmission is a fundamental challenge in ecology. We used transmission potential networks to investigate whether a gastrointestinal protozoan (Blastocystisspp.) is spread through social, environmental, and/or zoonotic pathways in rural northeast Madagascar. Materials and MethodsWe obtained survey data, household GPS coordinates, and fecal samples from 804 participants. Surveys inquired about social contacts, agricultural activity, and sociodemographic characteristics. Fecal samples were screened forBlastocystisusing DNA metabarcoding. We also tested 133 domesticated animals forBlastocystis. We used network autocorrelation models and permutation tests (networkk‐test) to determine whether networks reflecting different transmission pathways predicted infection. ResultsWe identified six distinctBlastocystissubtypes among study participants and their domesticated animals. Among the 804 human participants, 74% (n = 598) were positive for at least oneBlastocystissubtype. Close proximity to infected households was the most informative predictor of infection with any subtype (model averaged OR [95% CI]: 1.56 [1.33–1.82]), and spending free time with infected participants was not an informative predictor of infection (model averaged OR [95% CI]: 0.95 [0.82–1.10]). No human participant was infected with the same subtype as the domesticated animals they owned. DiscussionOur findings suggest thatBlastocystisis most likely spread through environmental pathways within villages, rather than through social or animal contact. The most likely mechanisms involve fecal contamination of the environment by infected individuals or shared food and water sources. These findings shed new light on human‐pathogen ecology and mechanisms for reducing disease transmission in rural, low‐income settings. 
    more » « less
  5. Introduction Campylobacter spp. infections are responsible for significant diarrheal disease burden across the globe, with prevalence thought to be increasing. Although wild avian species have been studied as reservoirs of Campylobacter spp., our understanding of the role of wild mammalian species in disease transmission and persistence is limited. Host factors influencing infection dynamics in wild mammals have been neglected, particularly life traits, and the role of these factors in zoonotic spillover risk is largely unknown. Methods Here, we conducted a systematic literature review, identifying mammalian species that had been tested for Campylobacter spp. infections (molecular and culture based). We used logistic regression to evaluate the relationship between the detection of Campylobacter spp. in feces and host life traits (urban association, trophic level, and sociality). Results Our analysis suggest that C. jejuni transmission is associated with urban living and trophic level. The probability of carriage was highest in urban-associated species ( p = 0.02793) and the most informative model included trophic level. In contrast, C. coli carriage appears to be strongly influenced by sociality ( p = 0.0113) with trophic level still being important. Detection of Campylobacter organisms at the genus level, however, was only associated with trophic level ( p = 0.0156), highlighting the importance of this trait in exposure dynamics across host and Campylobacter pathogen systems. Discussion While many challenges remain in the detection and characterization of Camploybacter spp., these results suggest that host life traits may have important influence on pathogen exposure and transmission dynamics, providing a useful starting point for more directed surveillance approaches. 
    more » « less