Experimental observations of drops of water with aniline dye softly located or impacting onto balsa wood substrates were used to elucidate the effect of an in-plane electric field (at a high voltage of 10 kV applied) on drop behavior. The top and side views were recorded simultaneously. The short-term recordings (on the scale of a few ms) demonstrated a slight effect of the applied in-plane electric field. In some trials, a greater number of finger-like structures were observed along the drop rim compared to the trials without voltage applied. These fingers developed during the advancing motion of the drop rim. The long-term recording (on the scale of ∼10 s) was used to evaluate the wettability-driven increase in the area-equivalent radius of the wetted area. These substrates had grooves in the inter-electrode or the cross-field directions. The groove directions affected the wettability-driven spreading and imbibition. The wettability-driven spreading in the long term was a much more significant effect than the effect of the electric field, because the imbibition significantly diminished the drop part above the porous surface, which diminished, in turn, the electric Maxwell stresses, which could stretch the drop. A simplified analytical model was developed to measure the moisture transport coefficient responsible for liquid imbibition in these experiments. Furthermore, the phase-field modeling of drops on balsa was used to illustrate how a change in the contact angle from hydrophobic to hydrophilic triggers drop imbibition into balsa wood.
more »
« less
Impact of drops of epoxy resin and hardener, silicone and turpentine oils onto balsa wood and polypropylene substrates
Electrowetting and wettability-driven spreading of liquids on porous and nonporous substrates was investigated using impact of drops of epoxy resin, epoxy hardener, and epoxy resin and hardener, as well as silicone and turpentine oils with oil-soluble aniline dyes onto balsa wood and polypropylene surfaces. The experimental results revealed that the electric field stretched drops of epoxy resin, epoxy hardener, and epoxy resin and hardener after impact on polypropylene substrate in the long-term. The spreading of drops of epoxy resin and turpentine oil with dyes after impact onto porous balsa wood under the action of a 10 kV applied voltage was relatively weak. In addition, the measured footprint areas corresponding to drops of epoxy resin, epoxy hardener, and epoxy resin and hardener demonstrated a significant increase in the wetted areas driven by the applied voltage of 10 kV on polypropylene substrate, whereas on balsa wood, the footprint is practically unaffected by the electric field. Furthermore, it was determined that surface wettability was the main mechanism of spreading of epoxy resin, as well as silicone and turpentine oils with aniline dyes on porous balsa without the electric field applied. On the other hand, insufficient concentration of ions and counterions in silicone oil was responsible for the absence of electrohydrodynamic effects after impact of such drops onto porous balsa substrate subjected to high potentials of 7 and 10 kV. Hence, wettability-driven spreading with imbibition on balsa wood was the only reason for an increase in the wetted area in the case of silicone oil.
more »
« less
- Award ID(s):
- 2312197
- PAR ID:
- 10520512
- Publisher / Repository:
- AIP Publishing
- Date Published:
- Journal Name:
- Physics of Fluids
- Volume:
- 36
- Issue:
- 5
- ISSN:
- 1070-6631
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
It is shown experimentally that drops of two pure silicone oils of different viscosities on a polypropylene substrate do not react to the in-plane electric field. Pre-treatment of silicone oil in a humid atmosphere at 80% relative humidity enriches oil with water-related ions and results in subsequent drop slight stretching under the action of the in-plane electric field. These phenomena demonstrate that the original silicone oils do not contain a sufficient concentration of any ions and counter-ions for the appearance of any Coulomb force or Maxwell stresses, which would result in drop stretching. However, a stronger stretching of silicone oil drops on the polypropylene substrate subjected to the in-plane electric field was experimentally demonstrated when 5 wt. % of [Formula: see text] particles was suspended in oil. The particles behave as electric dipoles and, when subjected to a nonlinear symmetric electric field, experience dielectrophoretic force, which attracts them to both electrodes in air and oil. 3D simulations of the dielectrophoretically driven evolution of silicone oil drops laden with TiO2particles also revealed a significant drop stretching in the inter-electrode direction in qualitative agreement with the experimental data. Still, numerical simulations predict an unbounded stretching with two tongues developing at the two drop sides. This prediction disagrees with the experiments where the dielectrophoretically driven stretching ceases and steady-state drop configurations without tongues are attained. This disagreement is probably related to the fact that in the experiments, [Formula: see text] particles settle onto the substrate and are subjected to significant additional friction forces, which could ultimately arrest them.more » « less
-
Epoxy is the most prevalent thermosetting resin in the field of polymer composite materials. There has been a growing interest in the development of bio-based epoxy resins as a sustainable alternative to conventional petrochemical epoxy resins. Advances in this field in recent years have included the use of various renewable resources, such as vegetable oils, lignin, and sugars, as direct precursors to produce bio-based epoxy resins. In the meantime, bio-oils have been produced via the decomposition of biomass through thermochemical conversion and mainly being used as renewable liquid fuels. It is noteworthy that bio-oils can be used as a sustainable resource to produce epoxy resins. This review addresses research progress in producing bio-oil-based epoxy resins from thermochemical processing techniques including organic solvent liquefaction, fast pyrolysis, and hydrothermal liquefaction. The production of bio-oil from thermochemical processing and its use to inject sustainability into epoxy resins are discussed. Herein, we intend to provide an overall picture of current attempts in the research area of bio-oil-based epoxy resins, reveal their potential for sustainable epoxy resins, and stimulate research interests in green/renewable materials.more » « less
-
We report a transformative epoxy system with a microalgae-derived bio-binder from hydrothermal liquefaction processing (HTL). The obtained bio-binder not only served as a curing agent for conventional epoxy resin (e.g., EPON 862), but also acted as a modifying agent to enhance the thermal and mechanical properties of the conventional epoxy resin. This game-changing epoxy/bio-binder system outperformed the conventional epoxy/hardener system in thermal stability and mechanical properties. Compared to the commercial EPON 862/EPIKURE W epoxy product, our epoxy/bio-binder system (35 wt.% bio-binder addition with respect to the epoxy) increased the temperature of 60% weight loss from 394 °C to 428 °C and the temperature of maximum decomposition rate from 382 °C to 413 °C, while the tensile, flexural, and impact performance of the cured epoxy improved in all cases by up to 64%. Our research could significantly impact the USD 38.2 billion global market of the epoxy-related industry by not only providing better thermal and mechanical performance of epoxy-based composite materials, but also simultaneously reducing the carbon footprint from the epoxy industry and relieving waste epoxy pollution.more » « less
-
We report a transformative epoxy system with a microalgae-derived bio-binder from hydrothermal liquefaction processing (HTL). The obtained bio-binder not only served as a curing agent for conventional epoxy resin (e.g., EPON 862), but also acted as a modifying agent to enhance the thermal and mechanical properties of the conventional epoxy resin. This game-changing epoxy/bio-binder system outperformed the conventional epoxy/hardener system in thermal stability and mechanical properties. Compared to the commercial EPON 862/EPIKURE W epoxy product, our epoxy/bio-binder system (35 wt.% bio-binder addition with respect to the epoxy) increased the temperature of 60% weight loss from 394 °C to 428 °C and the temperature of maximum decomposition rate from 382 °C to 413 °C, while the tensile, flexural, and impact performance of the cured epoxy improved in all cases by up to 64%. Our research could significantly impact the USD 38.2 billion global market of the epoxy-related industry by not only providing better thermal and mechanical performance of epoxy-based composite materials, but also simultaneously reducing the carbon footprint from the epoxy industry and relieving waste epoxy pollution.more » « less
An official website of the United States government

