skip to main content


Title: Reasoning with large language models for medical question answering
Abstract Objectives

To investigate approaches of reasoning with large language models (LLMs) and to propose a new prompting approach, ensemble reasoning, to improve medical question answering performance with refined reasoning and reduced inconsistency.

Materials and Methods

We used multiple choice questions from the USMLE Sample Exam question files on 2 closed-source commercial and 1 open-source clinical LLM to evaluate our proposed approach ensemble reasoning.

Results

On GPT-3.5 turbo and Med42-70B, our proposed ensemble reasoning approach outperformed zero-shot chain-of-thought with self-consistency on Steps 1, 2, and 3 questions (+3.44%, +4.00%, and +2.54%) and (2.3%, 5.00%, and 4.15%), respectively. With GPT-4 turbo, there were mixed results with ensemble reasoning again outperforming zero-shot chain-of-thought with self-consistency on Step 1 questions (+1.15%). In all cases, the results demonstrated improved consistency of responses with our approach. A qualitative analysis of the reasoning from the model demonstrated that the ensemble reasoning approach produces correct and helpful reasoning.

Conclusion

The proposed iterative ensemble reasoning has the potential to improve the performance of LLMs in medical question answering tasks, particularly with the less powerful LLMs like GPT-3.5 turbo and Med42-70B, which may suggest that this is a promising approach for LLMs with lower capabilities. Additionally, the findings show that our approach helps to refine the reasoning generated by the LLM and thereby improve consistency even with the more powerful GPT-4 turbo. We also identify the potential and need for human-artificial intelligence teaming to improve the reasoning beyond the limits of the model.

 
more » « less
PAR ID:
10520656
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Journal of the American Medical Informatics Association
Volume:
31
Issue:
9
ISSN:
1067-5027
Format(s):
Medium: X Size: p. 1964-1975
Size(s):
p. 1964-1975
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Motivation

    Large language models (LLMs) are being adopted at an unprecedented rate, yet still face challenges in knowledge-intensive domains such as biomedicine. Solutions such as pretraining and domain-specific fine-tuning add substantial computational overhead, requiring further domain-expertise. Here, we introduce a token-optimized and robust Knowledge Graph-based Retrieval Augmented Generation (KG-RAG) framework by leveraging a massive biomedical KG (SPOKE) with LLMs such as Llama-2-13b, GPT-3.5-Turbo, and GPT-4, to generate meaningful biomedical text rooted in established knowledge.

    Results

    Compared to the existing RAG technique for Knowledge Graphs, the proposed method utilizes minimal graph schema for context extraction and uses embedding methods for context pruning. This optimization in context extraction results in more than 50% reduction in token consumption without compromising the accuracy, making a cost-effective and robust RAG implementation on proprietary LLMs. KG-RAG consistently enhanced the performance of LLMs across diverse biomedical prompts by generating responses rooted in established knowledge, accompanied by accurate provenance and statistical evidence (if available) to substantiate the claims. Further benchmarking on human curated datasets, such as biomedical true/false and multiple-choice questions (MCQ), showed a remarkable 71% boost in the performance of the Llama-2 model on the challenging MCQ dataset, demonstrating the framework’s capacity to empower open-source models with fewer parameters for domain-specific questions. Furthermore, KG-RAG enhanced the performance of proprietary GPT models, such as GPT-3.5 and GPT-4. In summary, the proposed framework combines explicit and implicit knowledge of KG and LLM in a token optimized fashion, thus enhancing the adaptability of general-purpose LLMs to tackle domain-specific questions in a cost-effective fashion.

    Availability and implementation

    SPOKE KG can be accessed at https://spoke.rbvi.ucsf.edu/neighborhood.html. It can also be accessed using REST-API (https://spoke.rbvi.ucsf.edu/swagger/). KG-RAG code is made available at https://github.com/BaranziniLab/KG_RAG. Biomedical benchmark datasets used in this study are made available to the research community in the same GitHub repository.

     
    more » « less
  2. While large language models (LLMs) like GPT-3 have achieved impressive results on multiple choice question answering (MCQA) tasks in the zero, one, and few-shot settings, they generally lag behind the MCQA state of the art (SOTA). MCQA tasks have traditionally been presented to LLMs like cloze tasks. An LLM is conditioned on a question (without the associated answer options) and its chosen option is the one assigned the highest probability after normalization (for length, etc.). A more natural prompting approach is to present the question and answer options to the LLM jointly and have it output the symbol (e.g., “A”) associated with its chosen answer option. This approach allows the model to explicitly compare answer options, reduces computational costs, and mitigates the effects of tokenization scheme and answer option representations on answer selection. For the natural approach to be effective, the LLM it is used with must be able to associate answer options with the symbols that represent them. The LLM needs what we term multiple choice symbol binding (MCSB) ability. This ability varies greatly by model. We show that a model with high MCSB ability performs much better with the natural approach than with the traditional approach across 20 diverse datasets and largely closes the gap with the SOTA, suggesting that the MCQA ability of LLMs has been previously underestimated. 
    more » « less
  3. Abstract Importance

    The study highlights the potential of large language models, specifically GPT-3.5 and GPT-4, in processing complex clinical data and extracting meaningful information with minimal training data. By developing and refining prompt-based strategies, we can significantly enhance the models’ performance, making them viable tools for clinical NER tasks and possibly reducing the reliance on extensive annotated datasets.

    Objectives

    This study quantifies the capabilities of GPT-3.5 and GPT-4 for clinical named entity recognition (NER) tasks and proposes task-specific prompts to improve their performance.

    Materials and Methods

    We evaluated these models on 2 clinical NER tasks: (1) to extract medical problems, treatments, and tests from clinical notes in the MTSamples corpus, following the 2010 i2b2 concept extraction shared task, and (2) to identify nervous system disorder-related adverse events from safety reports in the vaccine adverse event reporting system (VAERS). To improve the GPT models' performance, we developed a clinical task-specific prompt framework that includes (1) baseline prompts with task description and format specification, (2) annotation guideline-based prompts, (3) error analysis-based instructions, and (4) annotated samples for few-shot learning. We assessed each prompt's effectiveness and compared the models to BioClinicalBERT.

    Results

    Using baseline prompts, GPT-3.5 and GPT-4 achieved relaxed F1 scores of 0.634, 0.804 for MTSamples and 0.301, 0.593 for VAERS. Additional prompt components consistently improved model performance. When all 4 components were used, GPT-3.5 and GPT-4 achieved relaxed F1 socres of 0.794, 0.861 for MTSamples and 0.676, 0.736 for VAERS, demonstrating the effectiveness of our prompt framework. Although these results trail BioClinicalBERT (F1 of 0.901 for the MTSamples dataset and 0.802 for the VAERS), it is very promising considering few training samples are needed.

    Discussion

    The study’s findings suggest a promising direction in leveraging LLMs for clinical NER tasks. However, while the performance of GPT models improved with task-specific prompts, there's a need for further development and refinement. LLMs like GPT-4 show potential in achieving close performance to state-of-the-art models like BioClinicalBERT, but they still require careful prompt engineering and understanding of task-specific knowledge. The study also underscores the importance of evaluation schemas that accurately reflect the capabilities and performance of LLMs in clinical settings.

    Conclusion

    While direct application of GPT models to clinical NER tasks falls short of optimal performance, our task-specific prompt framework, incorporating medical knowledge and training samples, significantly enhances GPT models' feasibility for potential clinical applications.

     
    more » « less
  4. Advances in large language models (LLMs) have empowered a variety of applications. However, there is still a significant gap in research when it comes to understanding and enhancing the capabilities of LLMs in the field of mental health. In this work, we present a comprehensive evaluation of multiple LLMs on various mental health prediction tasks via online text data, including Alpaca, Alpaca-LoRA, FLAN-T5, GPT-3.5, and GPT-4. We conduct a broad range of experiments, covering zero-shot prompting, few-shot prompting, and instruction fine-tuning. The results indicate a promising yet limited performance of LLMs with zero-shot and few-shot prompt designs for mental health tasks. More importantly, our experiments show that instruction finetuning can significantly boost the performance of LLMs for all tasks simultaneously. Our best-finetuned models, Mental-Alpaca and Mental-FLAN-T5, outperform the best prompt design of GPT-3.5 (25 and 15 times bigger) by 10.9% on balanced accuracy and the best of GPT-4 (250 and 150 times bigger) by 4.8%. They further perform on par with the state-of-the-art task-specific language model. We also conduct an exploratory case study on LLMs' capability on mental health reasoning tasks, illustrating the promising capability of certain models such as GPT-4. We summarize our findings into a set of action guidelines for potential methods to enhance LLMs' capability for mental health tasks. Meanwhile, we also emphasize the important limitations before achieving deployability in real-world mental health settings, such as known racial and gender bias. We highlight the important ethical risks accompanying this line of research. 
    more » « less
  5. Abstract

    Recent advances in large language models (LLMs) have demonstrated remarkable successes in zero- and few-shot performance on various downstream tasks, paving the way for applications in high-stakes domains. In this study, we systematically examine the capabilities and limitations of LLMs, specifically GPT-3.5 and ChatGPT, in performing zero-shot medical evidence summarization across six clinical domains. We conduct both automatic and human evaluations, covering several dimensions of summary quality. Our study demonstrates that automatic metrics often do not strongly correlate with the quality of summaries. Furthermore, informed by our human evaluations, we define a terminology of error types for medical evidence summarization. Our findings reveal that LLMs could be susceptible to generating factually inconsistent summaries and making overly convincing or uncertain statements, leading to potential harm due to misinformation. Moreover, we find that models struggle to identify the salient information and are more error-prone when summarizing over longer textual contexts.

     
    more » « less