skip to main content


Title: Boundary of the Distribution of Solar Wind Proton Beta versus Temperature Anisotropy
Abstract

The frequency distribution of solar wind protons, measured in the vicinity of Earth’s orbit, is customarily plotted in (β,T/T) phase space. Here,T/Tis the ratio of perpendicular and parallel temperatures, andβ= 8πnT/B2is the ratio of parallel thermal energy to background magnetic field energy, the so-called “parallel beta,” with ⊥ and ∥ denoting directions with respect to the ambient magnetic field. Such a frequency distribution, plotted as a two-dimensional histogram, forms a peculiar rhombic shape defined with an outer boundary in the said phase space. Past studies reveal that the threshold conditions for temperature anisotropy–driven plasma instability partially account for the boundary on the high-βside. The low-βside remains largely unexplained despite some efforts. Work by Vafin et al. recently showed that certain contours of collisional relaxation frequency,νpp, when parameterized byT/Tandβ, could match the overall shape of the left-hand boundary, thus suggesting that the collisional relaxation process might be closely related to the formation of the left-hand boundary. The present paper extends the analysis by Vafin et al. and carries out the dynamical computation of the collisional relaxation process for an ensemble of initial proton states with varying degrees of anisotropic temperatures. The final states of the relaxed protons are shown to closely match the observed boundary to the left of the (β,T/T) phase space. When coupled with a similar set of calculations for the ensemble in the collective instability regime, it is found that the combined collisional/collective effects provide the baseline explanation for the observation.

 
more » « less
NSF-PAR ID:
10520682
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
969
Issue:
2
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 77
Size(s):
Article No. 77
Sponsoring Org:
National Science Foundation
More Like this
  1. TheT1andT2relaxation rates of different protons in small cyclic and polycyclic guests can be controlled by encapsulation in a water-soluble synthetic receptor.

     
    more » « less
  2. Abstract

    Using an MHD simulation of near tail reconnection associated with a flow burst and the collapse (dipolarization) of the inner tail in combination with test particle tracing we study the acceleration and flux increases of energetic oxygen ions (O+). The characteristic orbits, distributions, and acceleration mechanisms are governed by the dimensionless parameterσ = ωcitn, whereωciis the ion gyro frequency andtna characteristic Alfvén time of the MHD simulation. Forσ < 1, central plasma sheet (CPS) populations after the passage of the dipolarization front are found to resemble half‐shells in velocity space oriented toward dusk. They originate from within the CPS and are energized typically by a single encounter of the region of enhanced cross‐tail electric field associated with the flow burst. For largerσvalues (σ > 1) the O+distributions resemble more closely those of protons, consisting of two counter‐streaming field‐aligned beams and an, albeit more tenuous and irregular, ring population perpendicular to the magnetic field. The existence of the beams, however, depends on suitable earthward moving source populations in the plasma sheet boundary layer or the adjacent lobes. The acceleration to higher energies is found to indicate a charge dependence, consistent with a dominance of more highly charged ions at energies of a few hundred keV. As in earlier simulations, the simulated fluxes show large anisotropies and nongyrotropic effects, phase bunching, and spatially and temporally localized beams.

     
    more » « less
  3. Growths of monoclinic (AlxGa1−x)2O3thin films up to 99% Al contents are demonstrated via metalorganic chemical vapor deposition (MOCVD) using trimethylgallium (TMGa) as the Ga precursor. The utilization of TMGa, rather than triethylgallium, enables a significant improvement of the growth rates (>2.5 μm h−1) of β‐(AlxGa1−x)2O3thin films on (010), (100), and (01) β‐Ga2O3substrates. By systematically tuning the precursor molar flow rates, growth of coherently strained phase pure β‐(AlxGa1−x)2O3films is demonstrated by comprehensive material characterizations via high‐resolution X‐ray diffraction (XRD) and atomic‐resolution scanning transmission electron microscopy (STEM) imaging. Monoclinic (AlxGa1−x)2O3films with Al contents up to 99, 29, and 16% are achieved on (100), (010), and (01) β‐Ga2O3substrates, respectively. Beyond 29% of Al incorporation, the (010) (AlxGa1−x)2O3films exhibit β‐ to γ‐phase segregation. β‐(AlxGa1−x)2O3films grown on (01) β‐Ga2O3show local segregation of Al along (100) plane. Record‐high Al incorporations up to 99% in monoclinic (AlxGa1−x)2O3grown on (100) Ga2O3are confirmed from XRD, STEM, electron nanodiffraction, and X‐ray photoelectron spectroscopy measurements. These results indicate great promises of MOCVD development of β‐(AlxGa1−x)2O3films and heterostructures with high Al content and growth rates using TMGa for next‐generation high‐power and high‐frequency electronic devices.

     
    more » « less
  4. Purpose

    Both sodiumT1triple quantum (TQ) signal andT1relaxation pathways have a unique sensitivity to the sodium molecular environment. In this study an inversion recovery time proportional phase increment (IRTQTPPI) pulse sequence was investigated for simultaneous and reliable quantification of sodium TQ signal and bi‐exponentialT1relaxation times.

    Methods

    The IRTQTPPI sequence combines inversion recovery TQ filtering and time proportional phase increment. The reliable and reproducible results were achieved by the pulse sequence optimized in three ways: (1) optimization of the nonlinear fit for the determination of bothT1‐TQ signal andT1relaxation times; (2) suppression of unwanted signals by assessment of four different phase cycles; (3) nonlinear sampling during evolution time for optimal scan time without any compromises in fit accuracy. The relaxation timesT1andT2and the TQ signals from IRTQTPPI and TQTPPI were compared between 9.4 and 21.1 T. The motional environment of the sodium nuclei was evaluated by calculation of correlation times and nuclear quadrupole interaction strengths.

    Results

    Reliable measurements of theT1‐TQ signals andT1bi‐exponential relaxation times were demonstrated. The fit parameters for all four phase cycles were in good agreement with one another, with a negligible influence of unwanted signals. The agar samples yielded normalizedT1‐TQ signals from 3% to 16% relative to single quantum (SQ) signals at magnetic fields of both 9.4 and 21.1 T. In comparison, the normalizedT2‐TQ signal was in the range 15%–35%. The TQ/SQ signal ratio was decreased at 21.1 T as compared with 9.4 T for bothT1andT2relaxation pathways. The bi‐exponentialT1relaxation time separation ranged from 15 to 18 ms at 9.4 T and 15 to 21 ms at 21.1 T. TheT2relaxation time separation was larger, ranging from 28 to 35 ms at 9.4 T and 37 to 40 ms at 21.1 T.

    Conclusion

    The IRTQTPPI sequence, while providing a less intensive TQ signal than TQTPPI, allows a simultaneous and reliable quantification of both theT1‐TQ signal andT1relaxation times. The unique sensitivities of theT1andT2relaxation pathways to different types of molecular motion provide a deeper understanding of the sodium MR environment.

     
    more » « less
  5. Abstract

    Quartz crystals with zircon inclusions were synthesized using a piston-cylinder apparatus to experimentally evaluate the use of inclusions in “soft” host minerals for elastic thermobarometry. Synthesized zircon inclusion strains and, therefore, pressures (Pinc) were measured using Raman spectroscopy and then compared with the expected inclusion strains and pressures calculated from elastic models. Measured inclusion strains and inclusion pressures are systematically more tensile than the expected values and, thus, re-calculated entrapment pressures are overestimated. These discrepancies are not caused by analytical biases or assumptions in the elastic models and strain calculations. Analysis shows that inclusion strain discrepancies progressively decrease with decreasing experimental temperature in the α-quartz field. This behavior is consistent with inelastic deformation of the host–inclusion pairs induced by the development of large differential stresses during experimental cooling. Therefore, inclusion strains are more reliable for inclusions trapped at lower temperature conditions in the α-quartz field where there is less inelastic deformation of the host–inclusion systems. On the other hand, entrapment isomekes of zircon inclusions entrapped in the β-quartz stability field plot along the α–β quartz phase boundary, suggesting that the inclusion strains were mechanically reset at the phase boundary during experimental cooling and decompression. Therefore, inclusions contained in soft host minerals can be used for elastic thermobarometry and inclusions contained in β-quartz may provide constraints on thePTat which the host–inclusion system crossed the phase boundary during exhumation.

     
    more » « less