Abstract Mosses (Bryophyta) are a key group occupying an important phylogenetic position in land plant (embryophyte) evolution. The class Bryopsida represents the most diversified lineage, containing more than 95% of modern mosses, whereas other classes are species‐poor. Two branches with large numbers of gene duplications were elucidated by phylogenomic analyses, one in the ancestry of all mosses and another before the separation of the Bryopsida, Polytrichopsida, and Tetraphidopsida. The analysis of the phylogenetic progression of duplicated paralogs retained on genomic syntenic regions in thePhyscomitrella patensgenome confirmed that the whole‐genome duplication events WGD1 and WGD2 were re‐recognized as the ψ event and the Funarioideae duplication event, respectively. The ψ polyploidy event was tightly associated with the early diversification of Bryopsida, in the ancestor of Bryidae, Dicranidae, Timmiidae, and Funariidae. Together, four branches with large numbers of gene duplications were unveiled in the evolutionary past ofP. patens. Gene retention patterns following the four large‐scale duplications in different moss lineages were analyzed and discussed. Recurrent significant retention of stress‐related genes may have contributed to their adaption to distinct ecological environments and the evolutionary success of this early‐diverging land plant lineage.
more »
« less
Halophytes and heavy metals: A multi‐omics approach to understand the role of gene and genome duplication in the abiotic stress tolerance of Cakile maritima
Abstract PremiseThe origin of diversity is a fundamental biological question. Gene duplications are one mechanism that provides raw material for the emergence of novel traits, but evolutionary outcomes depend on which genes are retained and how they become functionalized. Yet, following different duplication types (polyploidy and tandem duplication), the events driving gene retention and functionalization remain poorly understood. Here we usedCakile maritima, a species that is tolerant to salt and heavy metals and shares an ancient whole‐genome triplication with closely related salt‐sensitive mustard crops (Brassica), as a model to explore the evolution of abiotic stress tolerance following polyploidy. MethodsUsing a combination of ionomics, free amino acid profiling, and comparative genomics, we characterize aspects of salt stress response inC. maritimaand identify retained duplicate genes that have likely enabled adaptation to salt and mild levels of cadmium. ResultsCakile maritimais tolerant to both cadmium and salt treatments through uptake of cadmium in the roots. Proline constitutes greater than 30% of the free amino acid pool inC. maritimaand likely contributes to abiotic stress tolerance. We find duplicated gene families are enriched in metabolic and transport processes and identify key transport genes that may be involved inC. maritimaabiotic stress tolerance. ConclusionsThese findings identify pathways and genes that could be used to enhance plant resilience and provide a putative understanding of the roles of duplication types and retention on the evolution of abiotic stress response.
more »
« less
- Award ID(s):
- 2224839
- PAR ID:
- 10520764
- Publisher / Repository:
- Botanical Society of America
- Date Published:
- Journal Name:
- American Journal of Botany
- ISSN:
- 0002-9122
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Summary High‐quality genome of rosemary (Salvia rosmarinus) represents a valuable resource and tool for understanding genome evolution and environmental adaptation as well as its genetic improvement. However, the existing rosemary genome did not provide insights into the relationship between antioxidant components and environmental adaptability. In this study, by employing Nanopore sequencing and Hi‐C technologies, a total of 1.17 Gb (97.96%) genome sequences were mapped to 12 chromosomes with 46 121 protein‐coding genes and 1265 non‐coding RNA genes. Comparative genome analysis reveals that rosemary had a closely genetic relationship withSalvia splendensandSalvia miltiorrhiza, and it diverged from them approximately 33.7 million years ago (MYA), and one whole‐genome duplication occurred around 28.3 MYA in rosemary genome. Among all identified rosemary genes, 1918 gene families were expanded, 35 of which are involved in the biosynthesis of antioxidant components. These expanded gene families enhance the ability of rosemary adaptation to adverse environments. Multi‐omics (integrated transcriptome and metabolome) analysis showed the tissue‐specific distribution of antioxidant components related to environmental adaptation. During the drought, heat and salt stress treatments, 36 genes in the biosynthesis pathways of carnosic acid, rosmarinic acid and flavonoids were up‐regulated, illustrating the important role of these antioxidant components in responding to abiotic stresses by adjusting ROS homeostasis. Moreover, cooperating with the photosynthesis, substance and energy metabolism, protein and ion balance, the collaborative system maintained cell stability and improved the ability of rosemary against harsh environment. This study provides a genomic data platform for gene discovery and precision breeding in rosemary. Our results also provide new insights into the adaptive evolution of rosemary and the contribution of antioxidant components in resistance to harsh environments.more » « less
-
Abstract Background Plant growth promoting rhizobacteria (PGPR) , such as Bradyrhizobium japonicum IRAT FA3, are able to improve seed germination and plant growth under various biotic and abiotic stress conditions, including high salinity stress. PGPR can affect plants’ responses to stress via multiple pathways which are often interconnected but were previously thought to be distinct. Although the overall impacts of PGPR on plant growth and stress tolerance have been well documented, the underlying mechanisms are not fully elucidated. This work contributes to understanding how PGPR promote abiotic stress by revealing major plant pathways triggered by B. japonicum under salt stress. Results The plant growth-promoting rhizobacterial (PGPR) strain Bradyrhizobium japonicum IRAT FA3 reduced the levels of sodium in Arabidopsis thaliana by 37.7% . B. japonicum primed plants as it stimulated an increase in jasmonates (JA) and modulated hydrogen peroxide production shortly after inoculation. B. japonicum -primed plants displayed enhanced shoot biomass, reduced lipid peroxidation and limited sodium accumulation under salt stress conditions. Q(RT)-PCR analysis of JA and abiotic stress-related gene expression in Arabidopsis plants pretreated with B. japonicum and followed by six hours of salt stress revealed differential gene expression compared to non-inoculated plants. Response to Desiccation ( RD ) gene RD20 and reactive oxygen species scavenging genes CAT3 and MDAR2 were up-regulated in shoots while CAT3 and RD22 were increased in roots by B. japonicum , suggesting roles for these genes in B. japonicum -mediated salt tolerance. B. japonicum also influenced reductions of RD22 , MSD1 , DHAR and MYC2 in shoots and DHAR , ADC2 , RD20 , RD29B , GTR1 , ANAC055 , VSP1 and VSP2 gene expression in roots under salt stress. Conclusion Our data showed that MYC2 and JAR1 are required for B. japonicum -induced shoot growth in both salt stressed and non-stressed plants. The observed microbially influenced reactions to salinity stress in inoculated plants underscore the complexity of the B. japonicum jasmonic acid-mediated plant response salt tolerance.more » « less
-
Summary Histone lysine methylations (HLMs) are implicated in control of gene expression in different eukaryotes. However, the role of HLMs in regulating desirable crop traits and the enzymes involved in these modifications are poorly understood.We studied the functions of tomato histone H3 lysine methyltransferases SET Domain Group 33 (SDG33) and SDG34 in biotic and abiotic stress responses.SDG33andSDG34gene edited mutants were altered in H3K36 and H3K4 methylations, and expression of genes involved in diverse processes and responses to biotic and abiotic stimuli.The double but not the single mutants show resistance to the fungal pathogenBotrytis cinerea.Interestingly, single mutants were tolerant to drought and the double mutant showed superior tolerance and plant growth consistent with independent and additive functions. Mutants maintained higher water status during drought and improved recovery and survival after lapse of drought.Notably, diminution of H3K4 and H3K36 trimethylation and expression of negative regulators in challenged plants contributes to stress tolerance of the mutants. Mutations inSDG33andSDG34are likely to remove predisposition to biotic and abiotic stress by disrupting permissive transcriptional context promoting expression of negative regulatory factors. These allows improvement of stress and pathogen tolerance, without growth trade‐offs, through modification of histone epigenetic marks.more » « less
-
Abstract Rice, an important food resource, is highly sensitive to salt stress, which is directly related to food security. Although many studies have identified physiological mechanisms that confer tolerance to the osmotic effects of salinity, the link between rice genotype and salt tolerance is not very clear yet. Association of gene co‐expression network and rice phenotypic data under stress has penitential to identify stress‐responsive genes, but there is no standard method to associate stress phenotype with gene co‐expression network. A novel method for integration of gene co‐expression network and stress phenotype data was developed to conduct a system analysis to link genotype to phenotype. We applied aLASSO‐based method to the gene co‐expression network of rice with salt stress to discover key genes and their interactions for salt tolerance‐related phenotypes. Submodules in gene modules identified from the co‐expression network were selected by theLASSOregression, which establishes a linear relationship between gene expression profiles and physiological responses, that is, sodium/potassium condenses under salt stress. Genes in these submodules have functions related to ion transport, osmotic adjustment, and oxidative tolerance. We argued that these genes in submodules are biologically meaningful and useful for studies on rice salt tolerance. This method can be applied to other studies to efficiently and reliably integrate co‐expression network and phenotypic data.more » « less
An official website of the United States government

