This content will become publicly available on March 22, 2025
In the boreal spring of 2023, an extreme coastal El Niño struck the coastal regions of Peru and Ecuador, causing devastating rainfalls, flooding, and record dengue outbreaks. Observations and ocean model experiments reveal that northerly alongshore winds and westerly wind anomalies in the eastern equatorial Pacific, initially associated with a record-strong Madden-Julian Oscillation and cyclonic disturbance off Peru in March, drove the coastal warming through suppressed coastal upwelling and downwelling Kelvin waves. Atmospheric model simulations indicate that the coastal warming in turn favors the observed wind anomalies over the far eastern tropical Pacific by triggering atmospheric deep convection. This implies a positive feedback between the coastal warming and the winds, which further amplifies the coastal warming. In May, the seasonal background cooling precludes deep convection and the coastal Bjerknes feedback, leading to the weakening of the coastal El Niño. This coastal El Niño is rare but predictable at 1 month lead, which is useful to protect lives and properties.
more » « less- Award ID(s):
- 2105654
- NSF-PAR ID:
- 10520877
- Publisher / Repository:
- AAAS
- Date Published:
- Journal Name:
- Science Advances
- Volume:
- 10
- Issue:
- 12
- ISSN:
- 2375-2548
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract The influence of eastern tropical Pacific (EPAC; 10°S–10°N, 140°–80°W) wind anomalies on El Niño is investigated using observations and model experiments. Extreme and moderate El Niños exhibit contrasting anomalous wind patterns in the EPAC during the peak and decay phases: westerly wind anomalies during extreme El Niño and southeasterly (southwesterly) wind anomalies south (north) of the equator during moderate El Niño. Experiments with an ocean general circulation model indicate that for extreme El Niño, the eastward intrusion of westerly wind anomalies contributes to the prolonged positive sea surface temperature (SST) anomalies in the eastern equatorial Pacific throughout boreal spring by weakened upwelling and horizontal advection. For moderate El Niño, by contrast, both the meridional and zonal anomalous winds over the EPAC are important in the rapid (slow) SST cooling south (north) of the equator through advection and wind–evaporation–SST feedback. Atmospheric model experiments confirm that these EPAC anomalous winds are primarily forced by tropical SST anomalies. The interplay between wind and SST anomalies suggests positive air–sea feedbacks over EPAC during the decay phase of El Niño. Ocean model results show that the frequency of extreme El Niño increases when EPAC wind anomalies are removed, suggesting the importance of EPAC winds for El Niño diversity.more » « less
-
Abstract During El Niño events, a strong tropics-wide warming of the free troposphere is observed (of order 1 K at 300 hPa). This warming plays an important role for the teleconnection processes associated with El Niño but it remains unclear what initiates this warming. Since convective quasi-equilibrium only holds in regions of deep convection, the strong free-tropospheric warming implies that the warmest surface waters (where atmospheric deep convection occurs) must warm during El Niño. We analyze the evolution of the oceanic mixed layer heat budget over El Niño events as function of sea surface temperature (SST). Data from the ERA5 and an unforced simulation of a coupled climate model both confirm that SSTs during an El Niño event increase at the high end of the SST distribution. The data show that this is due to an anomalous heat flux from the atmosphere into the ocean caused by a decrease in evaporation due anomalously weak low-level winds (i.e., relative to the wind speed observed in the domain of deep convection in the climatological base state). It is hypothesized that the more zonally symmetric circulation during El Niño is responsible for the weakening of low-level winds. The result of a substantial heat flux into the ocean in the domain of atmospheric deep convection (the opposite of the canonical heat flux out of the ocean into the atmosphere observed in the cold eastern Pacific) caused by a decrease in low-level wind speed implies that the prominent tropospheric warming results from mechanical forcing.
-
Abstract In this study, we investigate the relative contributions of dynamical forcings, particularly the eastern and central‐western Pacific winds, and thermodynamical forcings to the evolution of the 2017 extreme coastal El Niño using observations and modeling experiments. We show that the competing effects of anomalous eastern Pacific westerlies and central‐western Pacific easterlies and their resulting downwelling and upwelling equatorial Kelvin waves are essential for the evolution of the event, together with alongshore anomalous northerlies which suppress coastal upwelling and reduce latent heat release as discussed in previous studies. We find that eastern Pacific zonal wind anomalies are about twice as effective in generating a coastal response as central‐western Pacific anomalies, thus compensating for their usually smaller magnitude. While the 2017 event exemplified these competing effects, they were also found to be important in other coastal and basin‐scale El Niño events, thus contributing to the mechanisms responsible for El Niño diversity.
-
Abstract Global and regional impacts of El Niño-Southern Oscillation (ENSO) are sensitive to the details of the pattern of anomalous ocean warming and cooling, such as the contrasts between the eastern and central Pacific. However, skillful prediction of such ENSO diversity remains a challenge even a few months in advance. Here, we present an experimental forecast with a deep learning model (IGP-UHM AI model v1.0) for the
E (eastern Pacific) andC (central Pacific) ENSO diversity indices, specialized on the onset of strong eastern Pacific El Niño events by including a classification output. We find that higher ENSO nonlinearity is associated with better skill, with potential implications for ENSO predictability in a warming climate. When initialized in May 2023, our model predicts the persistence of El Niño conditions in the eastern Pacific into 2024, but with decreasing strength, similar to 2015–2016 but much weaker than 1997–1998. In contrast to the more typical El Niño development in 1997 and 2015, in addition to the ongoing eastern Pacific warming, an eXplainable Artificial Intelligence analysis for 2023 identifies weak warm surface, increased sea level and westerly wind anomalies in the western Pacific as precursors, countered by warm surface and southerly wind anomalies in the northern Atlantic. -
Abstract This study examines the climate response to a sea surface temperature (SST) warming imposed over the southwest Tropical Indian Ocean (TIO) in a coupled ocean-atmosphere model. The results indicate that the southwest TIO SST warming can remotely modulate the atmospheric circulation over the western North Pacific (WNP) via inter-basin air-sea interaction during early boreal summer. The southwest TIO SST warming induces a “C-shaped” wind response with northeasterly and northwesterly anomalies over the north and south TIO, respectively. The northeasterly wind anomalies contribute to the north TIO SST warming via a positive Wind-Evaporation-SST(WES) feedback after the Asian summer monsoon onset. In June, the easterly wind response extends into the WNP, inducing an SST cooling by WES feedback on the background trade winds. Both the north TIO SST warming and the WNP SST cooling contribute to an anomalous anticyclonic circulation (AAC) over the WNP. The north TIO SST warming, WNP SST cooling, and AAC constitute an inter-basin coupled mode called the Indo-western Pacific ocean capacitor (IPOC), and the southwest TIO SST warming could be a trigger for IPOC. While the summertime southwest TIO SST warming is often associated with antecedent El Niño, the warming in 2020 seems to be related to extreme Indian Ocean Dipole in 2019 fall. The strong southwest TIO SST warming seems to partly explain the strong summer AAC of 2020 over the WNP even without a strong antecedent El Niño.more » « less