skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Enhancing extracellular vesicle cargo loading and functional delivery by engineering protein-lipid interactions
Abstract Naturally generated lipid nanoparticles termed extracellular vesicles (EVs) hold significant promise as engineerable therapeutic delivery vehicles. However, active loading of protein cargo into EVs in a manner that is useful for delivery remains a challenge. Here, we demonstrate that by rationally designing proteins to traffic to the plasma membrane and associate with lipid rafts, we can enhance loading of protein cargo into EVs for a set of structurally diverse transmembrane and peripheral membrane proteins. We then demonstrate the capacity of select lipid tags to mediate increased EV loading and functional delivery of an engineered transcription factor to modulate gene expression in target cells. We envision that this technology could be leveraged to develop new EV-based therapeutics that deliver a wide array of macromolecular cargo.  more » « less
Award ID(s):
2145050 1844336 1844219
PAR ID:
10520922
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
15
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Neuronal extracellular vesicles (EVs) play important roles in intercellular communication and pathogenic protein propagation in neurological disease. However, it remains unclear how cargoes are selectively packaged into neuronal EVs. Here, we show that loss of the endosomal retromer complex leads to accumulation of EV cargoes including amyloid precursor protein (APP), synaptotagmin-4 (Syt4), and neuroglian (Nrg) at Drosophila motor neuron presynaptic terminals, resulting in increased release of these cargoes in EVs. By systematically exploring known retromer-dependent trafficking mechanisms, we show that EV regulation is separable from several previously identified roles of neuronal retromer. Conversely, mutations in rab11 and rab4, regulators of endosome-plasma membrane recycling, cause reduced EV cargo levels, and rab11 suppresses cargo accumulation in retromer mutants. Thus, EV traffic reflects a balance between Rab4/Rab11 recycling and retromer-dependent removal from EV precursor compartments. Our data shed light on previous studies implicating Rab11 and retromer in competing pathways in Alzheimer’s disease, and suggest that misregulated EV traffic may be an underlying defect. 
    more » « less
  2. Summary Extracellular vesicles (EVs) are small, membrane‐enclosed compartments that mediate the intercellular transport of proteins and small RNAs. In plants, EVs are thought to play a prominent role in immune responses and are being championed as the long‐sought‐after mechanism for host‐induced gene silencing. However, parallel research on mammalian EVs is raising concerns about potential pitfalls faced by all EV researchers that will need to be addressed in order to convincingly establish that EVs are the primary mediators of small RNA transfer between organisms. Here we discuss these pitfalls in the context of plant EV research, with a focus on experimental approaches required to distinguishbona fideEV cargo from merely co‐purifying contaminants. 
    more » « less
  3. In recent years, extracellular vesicles have become promising carriers as next-generation drug delivery platforms. Effective loading of exogenous cargos without compromising the extracellular vesicle membrane is a major challenge. Rapid squeezing through nanofluidic channels is a widely used approach to load exogenous cargoes into the EV through the nanopores generated temporarily on the membrane. However, the exact mechanism and dynamics of nanopore opening, as well as cargo loading through nanopores during the squeezing process remains unknown and it is impossible to visualize or quantify it experimentally due to the small size of the EV and the fast transient process. This paper developed a systemic algorithm to simulate nanopore formation and predict drug loading during extracellular vesicle (EV) squeezing by leveraging the power of coarse-grain (CG) molecular dynamics simulations with fluid dynamics. The EV CG beads are coupled with implicit the fluctuating lattice Boltzmann solvent. The effects of EV properties and various squeezing test parameters, such as EV size, flow velocity, channel width, and length, on pore formation and drug loading efficiency are analyzed. Based on the simulation results, a phase diagram is provided as a design guide for nanochannel geometry and squeezing velocity to generate pores on the membrane without damaging the EV. This method can be utilized to optimize the nanofluidic device configuration and flow setup to obtain desired drug loading into EVs. 
    more » « less
  4. Abstract Extracellular vesicles (EVs) play important roles in cell-cell communication but they are highly heterogeneous, and each vesicle has dimensions smaller than 200 nm thus encapsulates very limited amounts of cargos. We report the technique of NanOstirBar (NOB)-EnabLed Single Particle Analysis (NOBEL-SPA) that utilizes NOBs, which are superparamagnetic nanorods easily handled by a magnet or a rotating magnetic field, to act as isolated “islands” for EV immobilization and cargo confinement. NOBEL-SPA permits rapid inspection of single EV with high confidence by confocal fluorescence microscopy, and can assess the colocalization of selected protein/microRNA (miRNA) pairs in the EVs produced by various cell lines or present in clinical sera samples. Specific EV sub-populations marked by the colocalization of unique protein and miRNA combinations have been revealed by the present work, which can differentiate the EVs by their cells or origin, as well as to detect early-stage breast cancer (BC). We believe NOBEL-SPA can be expanded to analyze the co-localization of other types of cargo molecules, and will be a powerful tool to study EV cargo loading and functions under different physiological conditions, and help discover distinct EV subgroups valuable in clinical examination and therapeutics development. 
    more » « less
  5. Abstract Chinese hamster ovary (CHO) cells release and exchange large quantities of extracellular vesicles (EVs). EVs are highly enriched in microRNAs (miRs, or miRNAs), which are responsible for most of their biological effects. We have recently shown that the miR content of CHO EVs varies significantly under culture stress conditions. Here, we provide a novel stoichiometric (“per‐EV”) quantification of miR and protein levels in large CHO EVs produced under ammonia, lactate, osmotic, and age‐related stress. Each stress resulted in distinct EV miR levels, with selective miR loading by parent cells. Our data provide a proof of concept for the use of CHO EV cargo as a diagnostic tool for identifying culture stress. We also tested the impact of three select miRs (let‐7a, miR‐21, and miR‐92a) on CHO cell growth and viability. Let‐7a—abundant in CHO EVs from stressed cultures—reduced CHO cell viability, while miR‐92a—abundant in CHO EVs from unstressed cultures—promoted cell survival. Overexpression of miR‐21 had a slight detrimental impact on CHO cell growth and viability during late exponential‐phase culture, an unexpected result based on the reported antiapoptotic role of miR‐21 in other mammalian cell lines. These findings provide novel relationships between CHO EV cargo and cell phenotype, suggesting that CHO EVs may exert both pro‐ and antiapoptotic effects on target cells, depending on the conditions under which they were produced. 
    more » « less