skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Natural variation in yeast reveals multiple paths for acquiring higher stress resistance
Abstract BackgroundOrganisms frequently experience environmental stresses that occur in predictable patterns and combinations. For wildSaccharomyces cerevisiaeyeast growing in natural environments, cells may experience high osmotic stress when they first enter broken fruit, followed by high ethanol levels during fermentation, and then finally high levels of oxidative stress resulting from respiration of ethanol. Yeast have adapted to these patterns by evolving sophisticated “cross protection” mechanisms, where mild ‘primary’ doses of one stress can enhance tolerance to severe doses of a different ‘secondary’ stress. For example, in many yeast strains, mild osmotic or mild ethanol stresses cross protect against severe oxidative stress, which likely reflects an anticipatory response important for high fitness in nature. ResultsDuring the course of genetic mapping studies aimed at understanding the mechanisms underlying natural variation in ethanol-induced cross protection against H2O2, we found that a key H2O2scavenging enzyme, cytosolic catalase T (Ctt1p), was absolutely essential for cross protection in a wild oak strain. This suggested the absence of other compensatory mechanisms for acquiring H2O2resistance in that strain background under those conditions. In this study, we found surprising heterogeneity across diverse yeast strains in whetherCTT1function was fully necessary for acquired H2O2resistance. Some strains exhibited partial dispensability ofCTT1when ethanol and/or salt were used as mild stressors, suggesting that compensatory peroxidases may play a role in acquired stress resistance in certain genetic backgrounds. We leveraged global transcriptional responses to ethanol and salt stresses in strains with different levels ofCTT1dispensability, allowing us to identify possible regulators of these alternative peroxidases and acquired stress resistance in general. ConclusionsUltimately, this study highlights how superficially similar traits can have different underlying molecular foundations and provides a framework for understanding the diversity and regulation of stress defense mechanisms.  more » « less
Award ID(s):
1941824 1656602
PAR ID:
10520931
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
BMC Biology
Volume:
22
Issue:
1
ISSN:
1741-7007
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT All living organisms must recognize and respond to various environmental stresses throughout their lifetime. In natural environments, cells frequently encounter fluctuating concentrations of different stressors that can occur in combination or sequentially. Thus, the ability to anticipate an impending stress is likely ecologically relevant. One possible mechanism for anticipating future stress is acquired stress resistance, where cells preexposed to a mild sublethal dose of stress gain the ability to survive an otherwise lethal dose of stress. We have been leveraging wild strains of Saccharomyces cerevisiae to investigate natural variation in the yeast ethanol stress response and its role in acquired stress resistance. Here, we report that a wild vineyard isolate possesses ethanol-induced cross protection against severe concentrations of salt. Because this phenotype correlates with ethanol-dependent induction of the ENA genes, which encode sodium efflux pumps already associated with salt resistance, we hypothesized that variation in ENA expression was responsible for differences in acquired salt tolerance across strains. Surprisingly, we found that the ENA genes were completely dispensable for ethanol-induced survival of high salt concentrations in the wild vineyard strain. Instead, the ENA genes were necessary for the ability to resume growth on high concentrations of salt following a mild ethanol pretreatment. Surprisingly, this growth acclimation phenotype was also shared by the lab yeast strain despite lack of ENA induction under this condition. This study underscores that cross protection can affect both viability and growth through distinct mechanisms, both of which likely confer fitness effects that are ecologically relevant. IMPORTANCE Microbes in nature frequently experience “boom or bust” cycles of environmental stress. Thus, microbes that can anticipate the onset of stress would have an advantage. One way that microbes anticipate future stress is through acquired stress resistance, where cells exposed to a mild dose of one stress gain the ability to survive an otherwise lethal dose of a subsequent stress. In the budding yeast Saccharomyces cerevisiae , certain stressors can cross protect against high salt concentrations, though the mechanisms governing this acquired stress resistance are not well understood. In this study, we took advantage of wild yeast strains to understand the mechanism underlying ethanol-induced cross protection against high salt concentrations. We found that mild ethanol stress allows cells to resume growth on high salt, which involves a novel role for a well-studied salt transporter. Overall, this discovery highlights how leveraging natural variation can provide new insights into well-studied stress defense mechanisms. 
    more » « less
  2. Abstract Adaptive laboratory evolution (ALE) can be used to make bacteria less susceptible to oxidative stress. An alternative to large batch scale ALE cultures is to use microfluidic platforms, which are often more economical and more efficient. Microfluidic ALE platforms have shown promise, but many have suffered from subpar cell passaging mechanisms and poor spatial definition. A new approach is presented using a microfluidic Evolution on a Chip (EVoc) design which progressively drives microbial cells from areas of lower H2O2concentration to areas of higher concentration. Prolonged exposure, up to 72 h, revealed the survival of adaptive strains ofLacticaseibacillus rhamnosusGG, a beneficial probiotic often included in food products. After performing ALE on this microfluidic platform, the bacteria persisted under high H2O2concentrations in repeated trials. After two progressive exposures, the ability ofL. rhamnosusto grow in the presence of H2O2increased from 1 mmH2O2after a lag time of 31 h to 1 mmafter 21 h, 2 mmafter 28 h, and 3 mmafter 42 h. The adaptive strains have different morphology, and gene expression compared to wild type, and genome sequencing revealed a potentially meaningful single nucleotide mutation in the protein omega‐amidase. 
    more » « less
  3. Abstract BackgroundCells and organisms typically cannot survive in the absence of water. However, some animals including nematodes, tardigrades, rotifers, and some arthropods are able to survive near-complete desiccation. One class of proteins known to play a role in desiccation tolerance is the late embryogenesis abundant (LEA) proteins. These largely disordered proteins protect plants and animals from desiccation. A multitude of studies have characterized stress-protective capabilities of LEA proteins in vitro and in heterologous systems. However, the extent to which LEA proteins exhibit such functions in vivo, in their native contexts in animals, is unclear. Furthermore, little is known about the distribution of LEA proteins in multicellular organisms or tissue-specific requirements in conferring stress protection. Here, we used the nematodeC. elegansas a model to study the endogenous function of an LEA protein in an animal. ResultsWe created a null mutant ofC. elegansLEA-1, as well as endogenous fluorescent reporters of the protein. LEA-1 mutant animals formed defective dauer larvae at high temperature. We confirmed thatC. eleganslacking LEA-1 are sensitive to desiccation. LEA-1 mutants were also sensitive to heat and osmotic stress and were prone to protein aggregation. During desiccation, LEA-1 expression increased and became more widespread throughout the body. LEA-1 was required at high levels in body wall muscle for animals to survive desiccation and osmotic stress, but expression in body wall muscle alone was not sufficient for stress resistance, indicating a likely requirement in multiple tissues. We identified minimal motifs withinC. elegansLEA-1 that were sufficient to increase desiccation survival ofE. coli. To test whether such motifs are central to LEA-1’s in vivo functions, we then replaced the sequence oflea-1with these minimal motifs and found thatC. elegansdauer larvae formed normally and survived osmotic stress and mild desiccation at the same levels as worms with the full-length protein. ConclusionsOur results provide insights into the endogenous functions and expression dynamics of an LEA protein in a multicellular animal. The results show that LEA-1 buffers animals from a broad range of stresses. Our identification of LEA motifs that can function in both bacteria and in a multicellular organism in vivo suggests the possibility of engineering LEA-1-derived peptides for optimized desiccation protection. 
    more » « less
  4. Goldman, Gustavo Henrique (Ed.)
    Reactive carbonyl and oxygen species (RCS/ROS), often generated as metabolic byproducts, particularly under conditions of pathology, can cause direct damage to proteins, lipids, and nucleic acids. Glyoxal oxidases (Gloxs) oxidize aldehydes to carboxylic acids, generating hydrogen peroxide (H2O2). Although best characterized for their roles in lignin degradation, Glox in plant fungal pathogens are known to contribute to virulence, however, the mechanism underlying such effects are unclear. Here, we show that Glox in the insect pathogenic fungus,Metarhizium acridum, is highly expressed in mycelia and during formation of infection structures (appressoria), with the enzyme localizing to the cell membrane.MaGloxtargeted gene disruption mutants showed RCS and ROS accumulation, resulting in cell toxicity, induction of apoptosis and increased autophagy, inhibiting normal fungal growth and development. The ability of theMaGloxmutant to scavenge RCS was significantly reduced, and the mutant exhibited increased susceptibility to aldehydes, oxidative and cell wall perturbing agents but not toward osmotic stress, with altered cell wall contents. The ΔMaGloxmutant was impaired in its ability to penetrate the host cuticle and evade host immune defense resulting in attenuated pathogenicity. Overexpression ofMaGloxpromoted fungal growth and conidial germination, increased tolerance to H2O2, but had little to other phenotypic effects. Transcriptomic analyses revealed downregulation of genes related to cell wall synthesis, conidiation, stress tolerance, and host cuticle penetration in the ΔMaGloxmutant. These findings demonstrate thatMaGlox-mediated scavenging of RCS is required for virulence, and contributes to normal fungal growth and development, stress resistance. 
    more » « less
  5. Abstract Oxygen-containing complex organic molecules are key precursors to biorelevant compounds fundamental for the origins of life. However, the untangling of their interstellar formation mechanisms has just scratched the surface, especially for oxygen-containing cyclic molecules. Here, we present the first laboratory simulation experiments featuring the formation of all three C2H4O isomers—ethylene oxide (c–C2H4O), acetaldehyde (CH3CHO), and vinyl alcohol (CH2CHOH)—in low-temperature model interstellar ices composed of carbon monoxide (CO) and ethanol (C2H5OH). Ice mixtures were exposed to galactic cosmic-ray proxies with an irradiation dose equivalent to a cold molecular cloud aged (7 ± 2) × 105yr. These biorelevant species were detected in the gas phase through isomer-selective photoionization reflectron time-of-flight mass spectrometry during temperature-programmed desorption. Isotopic labeling experiments reveal that ethylene oxide is produced from ethanol alone, providing the first experimental evidence to support the hypothesis that ethanol serves as a precursor to the prototype epoxide in interstellar ices. These findings reveal feasible pathways for the formation of all three C2H4O isomers in ethanol-rich interstellar ices, offering valuable constraints on astrochemical models for their formation. Our results suggest that ethanol is a critical precursor to C2H4O isomers in interstellar environments, representing a critical step toward unraveling the formation mechanisms of oxygen-containing cyclic molecules, aldehydes, and their enol tautomers from alcohols in interstellar ices. 
    more » « less