Climate and environmental instability during the early Aptian culminated with the unfolding of the Oceanic Anoxic Event (OAE) 1a, which resulted in the deposition of black shales in deep marine settings and a typical negative spike followed by a positive excursion in δ13C values. In Vercors (southern France) the Urgonian platform developed prior to and coeval to the OAE1a, but the impact of this paleoenvironmental crisis on the ecology of benthic ecosystems is yet to be quantified. We gathered field and petrographic data to identify sequence boundaries and maximum flooding surfaces that are biostratigraphically dated and correlated between four localities within the study area. A composite δ13C curve is built where the C3 to C7 isotope segments from the literature are identified, pinpointing the onset of the OAE1a above the last episode of deposition of Urgonian facies rich in rudist bivalves. Furthermore, thin section point counting data are used to quantify the proportion of allochems in samples and to trace changes in the ecology of ecosystems. The principal component analysis of point counting data helps define ecological tiers: a diversified, photozoan association with rudists, green algae, and benthic foraminifera dominated ecosystems before the OAE1a and up to the C7 segment, while a less diversified heterozoan association with bryozoans and crinoids developed after the OAE1a. To explore the triggers for this change, the principal component analysis of elemental geochemical data highlights an increased nutrient and detrital input as major triggering mechanisms for ecological adjustments and changes in the biodiversity of ecosystems. In particular after the OAE1a, an increase in detrital and nutrient input leads to the replacement of photozoan by heterozoan assemblages more adapted to these stressful conditions. This research directly links paleoenvironmental deterioration to paleoecological changes and quantifies the amount of adaptation of ecosystems.
more »
« less
The response of Corbières carbonate platform to Early Cretaceous super greenhouse conditions
Shallow marine reef systems are the most diversified ecosystems of modern oceans but face a severe threat from climate change: 91% of ecosystems in the Great Barrier Reef suffer from coral bleaching. To better understand how such ecosystems cope with environmental stress, a carbonate platform from the Corbières region of southern France serves as ancient analog as it developed during the Early Aptian OAE1a, a period marked by significant climate and volcanic activity. The study sought to uncover how benthic carbonate-producing ecosystems adapted during this challenging period. The OAE1a is typically identified by distinctive shifts in carbon isotope composition (δ13C) values and increased organic matter preservation in deep marine settings. Identifying these shifts can shed light on factors favoring carbonate production. The research proposes that warm, arid climates promoted reduced continental weathering and limited transfer of siliciclastic particles and dissolved nutrients that might enhance carbonate platform resilience. We identified seven out of eight segments of the OAE1a and specific microfacies in the Corbières region. Prior to the OAE1a, carbonate production was sustained by a photozoan assemblage with rudists and [insert main biota], with no changes in fauna and flora. A significant shift occurred at the interface between the Urgonian Marl that consists of siliciclastic-rich deposits with bryozoan and crinoid, indicating platform drowning and altered carbonate production. In the aftermaths of the OAE1a, carbonate production not only rebounded but thrived in the upper Urgonian Marl and Urgonian 2 with the return of a photozoan assemblage. This research provides an understanding into the adaptability of carbonate ecosystems to environmental stress, potentially offering lessons for mitigating similar crisis in the future.
more »
« less
- Award ID(s):
- 1847885
- PAR ID:
- 10520972
- Publisher / Repository:
- SEPM
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Climate and environmental instability during the Early Aptian culminate with the unfolding of the Oceanic Anoxic Event (OAE) 1a, which consists of the deposition of black shales in deep marine settings and a typical negative spike in δ13C values followed by a positive excursion. In the Vercors, southern France, the Urgonian platform developed coeval to the OAE1a, but the impact of this paleoenvironmental crisis on the ecology of benthic ecosystem is yet to be quantified. First, field and petrographic data allow to identify sequence boundaries and maximum flooding surfaces; these are biostratigraphically dated and correlated within the study area. Second, a composite δ13C curve permits to identify the C3 to C7 isotope segments from the literature, thus pinpointing the onset of the OAE1a above the Urgonian Limestone, in the Upper Orbitolina Beds. Third, thin section point counting data permit to quantify the proportion of allochems, thus illuminating the ecology of ecosystems. Principal component analysis helps define three ecological tiers: diversified, photozoan associations with rudists, green algae, and benthic foraminifera dominate ecosystems prior to the OAE1a and up to the C7 segment, while a less diversified heterozoan association with bryozoan and crinoid developed in the aftermaths of the OAE1a. Fourth, elemental geochemical data identify an increased nutrient and detrital input (C7 segment) as the major triggering mechanisms for ecological adjustments and changes in the biodiversity of ecosystems. Our research indicate that these changes are initiated in the aftermaths of the OAE1a but culminate after it.more » « less
-
Abstract Marine sedimentary rocks of the late Eocene Pagat Member of the Tanjung Formation in the Asem Asem Basin near Satui, Kalimantan, provide an important geological archive for understanding the paleontological evolution of southern Kalimantan (Indonesian Borneo) in the interval leading up the development of the Central Indo-Pacific marine biodiversity hotspot. In this paper, we describe a moderately diverse assemblage of marine invertebrates within a sedimentological and stratigraphical context. In the studied section, the Pagat Member of the Tanjung Formation records an interval of overall marine transgression and chronicles a transition from the marginal marine and continental siliciclastic succession in the underlying Tambak Member to the carbonate platform succession in the overlying Berai Formation. The lower part of the Pagat Member contains heterolithic interbedded siliciclastic sandstone and glauconitic shale, with thin bioclastic floatstone and bioclastic rudstone beds. This segues into a calcareous shale succession with common foraminiferal packstone/rudstone lenses interpreted as low-relief biostromes. A diverse trace fossil assemblage occurs primarily in a muddy/glauconitic sandstone, sandy mudstone, and bioclastic packstone/rudstone succession, constraining the depositional setting to a mid-ramp/mid to distal continental shelf setting below fair-weather wave base but above storm wave base. Each biostrome rests upon a storm-generated ravinement surface characterized by a low-diversityGlossifungitesorTrypanitestrace fossil assemblage. The erosional surfaces were colonized by organisms that preferred stable substrates, including larger benthic foraminifera, solitary corals, oysters, and serpulid annelid worms. The biostromes comprised islands of high marine biodiversity on the mud-dominated Pagat coastline. Together, the biostromes analyzed in this study contained 13 genera of symbiont-bearing larger benthic foraminifera, ~40 mollusk taxa, at least 5 brachyuran decapod genera, and 6 coral genera (Anthemiphyllia,Balanophyllia,Caryophyllia,Cycloseris,Trachyphyllia, andTrochocyathus), as well as a variety of bryozoans, serpulids, echinoids, and asterozoans. High foraminiferal and molluscan diversity, coupled with modest coral diversity, supports the hypothesis that the origin of the diverse tropical invertebrate faunas that characterize the modern Indo-Australian region may have occurred in the latest Eocene/earliest Oligocene.more » « less
-
Guest, James R. (Ed.)Coral reefs protect islands, coastal areas, and their inhabitants from storm waves and provide essential goods and services to millions of people worldwide. Yet contemporary rates of ocean warming and local disturbances are jeopardizing the reef-building capacity of coral reefs to keep up with rapid rates of sea-level rise. This study compared the reef-building capacity of shallow-water habitats at 142 sites across a potential thermal-stress gradient in the tropical Pacific Ocean. We sought to determine the extent to which habitat differences and environmental variables potentially affect rates of net carbonate production. In general, outer-exposed reefs and lagoonal-patch reefs had higher rates of net carbonate production than nearshore reefs. The study found that thermal anomalies, particularly the intensity of thermal-stress events, play a significant role in reducing net carbonate production—evident as a diminishing trend of net carbonate production from the western to the central tropical Pacific Ocean. The results also showed a latent spatial effect along the same gradient, not explained by thermal stress, suggesting that reefs in the western tropical Pacific Ocean are potentially enhanced by the proximity of reefs in the Coral Triangle—an effect that diminishes with increasing distance and isolation.more » « less
-
Data from five sites of the International Long Term Ecological Research (ILTER) network in the North-Eastern Pacific, Western Arctic Ocean, Northern Baltic Sea, South-Eastern North Sea and in the Western Mediterranean Sea were analyzed by dynamic factor analysis (DFA) to trace common multi-year trends in abundance and composition of phytoplankton, benthic fauna and temperate reef fish. Multiannual trends were related to climate and environmental variables to study interactions. Two common trends in biological responses were detected, with temperature and climate indices as explanatory variables in four of the five LTER sites considered. Only one trend was observed at the fifth site, the Northern Baltic Sea, where no explanatory variables were identified. Our findings revealed quasi-synchronous biological shifts in the different marine ecosystems coincident with the 2000 climatic regime shift and provided evidence on a possible further biological shift around 2010. The observed biological modifications were coupled with abrupt or continuous increase in sea water and air temperature confirming the key-role of temperature in structuring marine communities.more » « less
An official website of the United States government

