Without drastic efforts to reduce carbon emissions and mitigate globalized stressors, tropical coral reefs are in jeopardy. Strategic conservation and management requires identification of the environmental and socioeconomic factors driving the persistence of scleractinian coral assemblages—the foundation species of coral reef ecosystems. Here, we compiled coral abundance data from 2,584 Indo-Pacific reefs to evaluate the influence of 21 climate, social and environmental drivers on the ecology of reef coral assemblages. Higher abundances of framework-building corals were typically associated with: weaker thermal disturbances and longer intervals for potential recovery; slower human population growth; reduced access by human settlements and markets; and less nearby agriculture. We therefore propose a framework of three management strategies (protect, recover or transform) by considering: (1) if reefs were above or below a proposed threshold of >10% cover of the coral taxa important for structural complexity and carbonate production; and (2) reef exposure to severe thermal stress during the 2014–2017 global coral bleach- ing event. Our findings can guide urgent management efforts for coral reefs, by identifying key threats across multiple scales and strategic policy priorities that might sustain a network of functioning reefs in the Indo-Pacific to avoid ecosystem collapse.
more »
« less
The response of Corbières carbonate platform to Early Cretaceous super greenhouse conditions
Shallow marine reef systems are the most diversified ecosystems of modern oceans but face a severe threat from climate change: 91% of ecosystems in the Great Barrier Reef suffer from coral bleaching. To better understand how such ecosystems cope with environmental stress, a carbonate platform from the Corbières region of southern France serves as ancient analog as it developed during the Early Aptian OAE1a, a period marked by significant climate and volcanic activity. The study sought to uncover how benthic carbonate-producing ecosystems adapted during this challenging period. The OAE1a is typically identified by distinctive shifts in carbon isotope composition (δ13C) values and increased organic matter preservation in deep marine settings. Identifying these shifts can shed light on factors favoring carbonate production. The research proposes that warm, arid climates promoted reduced continental weathering and limited transfer of siliciclastic particles and dissolved nutrients that might enhance carbonate platform resilience. We identified seven out of eight segments of the OAE1a and specific microfacies in the Corbières region. Prior to the OAE1a, carbonate production was sustained by a photozoan assemblage with rudists and [insert main biota], with no changes in fauna and flora. A significant shift occurred at the interface between the Urgonian Marl that consists of siliciclastic-rich deposits with bryozoan and crinoid, indicating platform drowning and altered carbonate production. In the aftermaths of the OAE1a, carbonate production not only rebounded but thrived in the upper Urgonian Marl and Urgonian 2 with the return of a photozoan assemblage. This research provides an understanding into the adaptability of carbonate ecosystems to environmental stress, potentially offering lessons for mitigating similar crisis in the future.
more »
« less
- Award ID(s):
- 1847885
- PAR ID:
- 10520972
- Publisher / Repository:
- SEPM
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Terrestrial runoff can negatively impact marine ecosystems through stressors including excess nutrients, freshwater, and contaminants. Severe storms, which are increasing with global climate change, generate massive inputs of runoff over short timescales (hours to days); such runoff impacted offshore reefs in the northwest Gulf of Mexico (NW GoM) following severe storms in 2016 and 2017. Several weeks after coastal flooding from these events, NW GoM reefs experienced mortality (2016 only) and/or sub-lethal stress (both years). To assess the impact of storm-derived runoff on reef filter feeders, we characterized the microbiomes of two sponges, Agelas clathrodes and Xestospongia muta, during periods of lethal stress, sub-lethal stress, and no stress over a three-year period (2016-2018). Increased anaerobes during lethal stress indicate hypoxic conditions were associated with the 2016 mortality event. Additionally, we found evidence of wastewater contamination (based on 16S libraries and quantitative PCR) in sponges 185 km offshore following storms (2016 and 2017), but not during the non-flooding year (2018). We show that water quality changes following severe storms can impact offshore benthic organisms, highlighting the need for molecular and microbial time series from near- and offshore reef ecosystems, and for the continued mitigation of stormwater runoff and climate change impacts.more » « less
-
null (Ed.)Terrestrial runoff can negatively impact marine ecosystems through stressors including excess nutrients, freshwater, sediments, and contaminants. Severe storms, which are increasing with global climate change, generate massive inputs of runoff over short timescales (hours to days); such runoff impacted offshore reefs in the northwest Gulf of Mexico (NW GoM) following severe storms in 2016 and 2017. Several weeks after coastal flooding from these events, NW GoM reef corals, sponges, and other benthic invertebrates ∼185 km offshore experienced mortality (2016 only) and/or sub-lethal stress (both years). To assess the impact of storm-derived runoff on reef filter feeders, we characterized the bacterial communities of two sponges, Agelas clathrodes and Xestospongia muta , from offshore reefs during periods of sub-lethal stress and no stress over a three-year period (2016—2018). Sponge-associated and seawater-associated bacterial communities were altered during both flood years. Additionally, we found evidence of wastewater contamination (based on 16S rRNA gene libraries and quantitative PCR) in offshore sponge samples, but not in seawater samples, following these flood years. Signs of wastewater contamination were absent during the no-flood year. We show that flood events from severe storms have the capacity to reach offshore reef ecosystems and impact resident benthic organisms. Such impacts are most readily detected if baseline data on organismal physiology and associated microbiome composition are available. This highlights the need for molecular and microbial time series of benthic organisms in near- and offshore reef ecosystems, and the continued mitigation of stormwater runoff and climate change impacts.more » « less
-
Abstract Marine sedimentary rocks of the late Eocene Pagat Member of the Tanjung Formation in the Asem Asem Basin near Satui, Kalimantan, provide an important geological archive for understanding the paleontological evolution of southern Kalimantan (Indonesian Borneo) in the interval leading up the development of the Central Indo-Pacific marine biodiversity hotspot. In this paper, we describe a moderately diverse assemblage of marine invertebrates within a sedimentological and stratigraphical context. In the studied section, the Pagat Member of the Tanjung Formation records an interval of overall marine transgression and chronicles a transition from the marginal marine and continental siliciclastic succession in the underlying Tambak Member to the carbonate platform succession in the overlying Berai Formation. The lower part of the Pagat Member contains heterolithic interbedded siliciclastic sandstone and glauconitic shale, with thin bioclastic floatstone and bioclastic rudstone beds. This segues into a calcareous shale succession with common foraminiferal packstone/rudstone lenses interpreted as low-relief biostromes. A diverse trace fossil assemblage occurs primarily in a muddy/glauconitic sandstone, sandy mudstone, and bioclastic packstone/rudstone succession, constraining the depositional setting to a mid-ramp/mid to distal continental shelf setting below fair-weather wave base but above storm wave base. Each biostrome rests upon a storm-generated ravinement surface characterized by a low-diversityGlossifungitesorTrypanitestrace fossil assemblage. The erosional surfaces were colonized by organisms that preferred stable substrates, including larger benthic foraminifera, solitary corals, oysters, and serpulid annelid worms. The biostromes comprised islands of high marine biodiversity on the mud-dominated Pagat coastline. Together, the biostromes analyzed in this study contained 13 genera of symbiont-bearing larger benthic foraminifera, ~40 mollusk taxa, at least 5 brachyuran decapod genera, and 6 coral genera (Anthemiphyllia,Balanophyllia,Caryophyllia,Cycloseris,Trachyphyllia, andTrochocyathus), as well as a variety of bryozoans, serpulids, echinoids, and asterozoans. High foraminiferal and molluscan diversity, coupled with modest coral diversity, supports the hypothesis that the origin of the diverse tropical invertebrate faunas that characterize the modern Indo-Australian region may have occurred in the latest Eocene/earliest Oligocene.more » « less
-
Guest, James R. (Ed.)Coral reefs protect islands, coastal areas, and their inhabitants from storm waves and provide essential goods and services to millions of people worldwide. Yet contemporary rates of ocean warming and local disturbances are jeopardizing the reef-building capacity of coral reefs to keep up with rapid rates of sea-level rise. This study compared the reef-building capacity of shallow-water habitats at 142 sites across a potential thermal-stress gradient in the tropical Pacific Ocean. We sought to determine the extent to which habitat differences and environmental variables potentially affect rates of net carbonate production. In general, outer-exposed reefs and lagoonal-patch reefs had higher rates of net carbonate production than nearshore reefs. The study found that thermal anomalies, particularly the intensity of thermal-stress events, play a significant role in reducing net carbonate production—evident as a diminishing trend of net carbonate production from the western to the central tropical Pacific Ocean. The results also showed a latent spatial effect along the same gradient, not explained by thermal stress, suggesting that reefs in the western tropical Pacific Ocean are potentially enhanced by the proximity of reefs in the Coral Triangle—an effect that diminishes with increasing distance and isolation.more » « less
An official website of the United States government

