Title: Reversible and high-contrast thermal conductivity switching in a flexible covalent organic framework possessing negative Poisson's ratio
A highly flexible covalent organic framework demonstrating dynamic and largest reversible thermal conductivity switching ratios shown thus far in any material system with immense potential for application in thermal management of microelectronics. more »« less
Hona, Ram Krishna
(, Academic Journal of Polymer Science)
unknown
(Ed.)
The thermal conductivity of CaSrFe2O6-δ, an oxygen-deficient perovskite, is a critical parameter for understanding its thermal transport properties and potential applications in energy conversion and electronic devices. In this study, we present an investigation of the thermal conductivity of CaSrFe2O6-δ at room temperature for its thermal insulation property study. Experimental measurement was conducted using a state-of-the-art thermal characterization technique, Thermtest thermal conductivity meter. The thermal conductivity of CaSrFe2O6-δ was found to be 0.574W/m/K, exhibiting a notable thermal insulation property.
Medicine_Cloud, Gillian; Guinn, Mandy; Krishna_Hona, Ram
(, New Energy Exploitation and Application)
CaSrFe0.75Co0.75Mn0.5O6-δ, an oxygen-deficient perovskite, had been reported for its better electrocatalytic properties of oxygen evolution reaction. It is essential to investigate different properties such as the thermal conductivity of such efficient functional materials. The thermal conductivity of CaSrFe0.75Co0.75Mn0.5O6-δ is a critical parameter for understanding its thermal transport properties and potential applications in energy conversion and electronic devices. In this study, the authors present an investigation of the thermal conductivity of CaSrFe0.75Co0.75Mn0.5O6-δ at room temperature for its thermal insulation property study. Experimental measurement was conducted using a state-of-the-art thermal characterization technique, Thermtest thermal conductivity meter. The thermal conductivity of CaSrFe0.75Co0.75Mn0.5O6-δ was found to be 0.724 W/m/K at 25 °C, exhibiting a notable thermal insulation property i.e., low thermal conductivity.
To push upper boundaries of thermal conductivity in polymer composites, understanding of thermal transport mechanisms is crucial. Despite extensive simulations, systematic experimental investigation on thermal transport in polymer composites is limited. To better understand thermal transport processes, we design polymer composites with perfect fillers (graphite) and defective fillers (graphite oxide), using polyvinyl alcohol (PVA) as a matrix model. Measured thermal conductivities of ~1.38 ± 0.22 W m−1K−1in PVA/defective filler composites is higher than those of ~0.86 ± 0.21 W m−1K−1in PVA/perfect filler composites, while measured thermal conductivities in defective fillers are lower than those of perfect fillers. We identify how thermal transport occurs across heterogeneous interfaces. Thermal transport measurements, neutron scattering, quantum mechanical modeling, and molecular dynamics simulations reveal that vibrational coupling between PVA and defective fillers at PVA/filler interfaces enhances thermal conductivity, suggesting that defects in polymer composites improve thermal transport by promoting this vibrational coupling.
Abstract Under climate change, ectotherms will likely face pressure to adapt to novel thermal environments by increasing their upper thermal tolerance and its plasticity, a measure of thermal acclimation. Ectotherm populations with high thermal tolerance are often less thermally plastic, a trade‐off hypothesized to result from (i) a phenotypic limit on thermal tolerance above which plasticity cannot further increase the trait, (ii) negative genetic correlation or (iii) fitness trade‐offs between the two traits. Whether each hypothesis causes negative associations between thermal tolerance and plasticity has implications for the evolution of each trait.We empirically tested the limit and trade‐off hypotheses by leveraging the experimental tractability and thermal biology of the intertidal copepodTigriopus californicus. Using populations from four latitudinally distributed sites in coastal California, six lines per population were reared under a laboratory common garden for two generations. Ninety‐six full sibling replicates (n = 4–5 per line) from a third generation were developmentally conditioned to 21.5 and 16.5°C until adulthood. We then measured the upper thermal tolerance and fecundity of sibships at each temperature.We detected a significant trade‐off in fecundity, a fitness corollary, between baseline thermal tolerance and its plasticity.Tigriopus californicuspopulations and genotypes with higher thermal tolerance were less thermally plastic. We detected negative directional selection on thermal plasticity under ambient temperature evidenced by reduced fecundity. These fitness costs of plasticity were significantly higher among thermally tolerant genotypes, consistent with the trade‐off hypothesis. This trade‐off was evident under ambient conditions, but not high temperature.Observed thermal plasticity and fecundity were best explained by a model incorporating both the limit and trade‐off hypotheses rather than models with parameters associated with one hypothesis. Effects of population and family on tolerance and plasticity negatively covaried, suggesting that a negative genetic correlation could not be ruled as contributing to negative associations between the traits. Our study provides a novel empirical test of the fitness trade‐off hypothesis that leverages a strong inference approach. We discuss our results' insights into how thermal adaptation may be constrained by physiological limits, genetic correlations, and fitness trade‐offs between thermal tolerance and its plasticity. Read the freePlain Language Summaryfor this article on the Journal blog.
Abstract Thermal emission is the radiation of electromagnetic waves from hot objects. The promise of thermal‐emission engineering for applications in energy harvesting, radiative cooling, and thermal camouflage has recently led to renewed research interest in this topic. However, accurate and precise measurements of thermal emission in a laboratory setting can be challenging in part due to the presence of background emission from the surrounding environment and the measurement instrument itself. This problem is especially acute for thermal emitters that have unconventional temperature dependence, operate at low temperatures, or are out of equilibrium. In this paper, general procedures are described, recommended, and demonstrated for thermal‐emission measurements that can accommodate such unconventional thermal emitters.
Thakur, Sandip, and Giri, Ashutosh.
"Reversible and high-contrast thermal conductivity switching in a flexible covalent organic framework possessing negative Poisson's ratio". Materials Horizons 10 (12). Country unknown/Code not available: Royal Society of Chemistry. https://doi.org/10.1039/d3mh01417g.https://par.nsf.gov/biblio/10521007.
@article{osti_10521007,
place = {Country unknown/Code not available},
title = {Reversible and high-contrast thermal conductivity switching in a flexible covalent organic framework possessing negative Poisson's ratio},
url = {https://par.nsf.gov/biblio/10521007},
DOI = {10.1039/d3mh01417g},
abstractNote = {A highly flexible covalent organic framework demonstrating dynamic and largest reversible thermal conductivity switching ratios shown thus far in any material system with immense potential for application in thermal management of microelectronics.},
journal = {Materials Horizons},
volume = {10},
number = {12},
publisher = {Royal Society of Chemistry},
author = {Thakur, Sandip and Giri, Ashutosh},
}
Warning: Leaving National Science Foundation Website
You are now leaving the National Science Foundation website to go to a non-government website.
Website:
NSF takes no responsibility for and exercises no control over the views expressed or the accuracy of
the information contained on this site. Also be aware that NSF's privacy policy does not apply to this site.