skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Nematocidal Potential of Phenolic Acids: A Phytochemical Seed-Coating Approach to Soybean Cyst Nematode Management
Soybeans, one of the most valuable crops worldwide, are annually decimated by the soybean cyst nematode (SCN), Heterodera glycines, resulting in massive losses in soybean yields and economic revenue. Conventional agricultural pesticides are generally effective in the short term; however, they pose growing threats to human and environmental health; therefore, alternative SCN management strategies are urgently needed. Preliminary findings show that phenolic acids are significantly induced during SCN infection and exhibit effective nematocidal activities in vitro. However, it is unclear whether these effects occur in planta or elicit any negative effects on plant growth traits. Here, we employed a phytochemical-based seed coating application on soybean seeds using phenolic acid derivatives (4HBD; 2,3DHBA) at variable concentrations and examined SCN inhibition against two SCN types. Moreover, we also examined plant growth traits under non-infected or SCN infected conditions. Notably, 2,3DHBA significantly inhibited SCN abundance in Race 2-infected plants with increasingly higher chemical doses. Interestingly, neither compound negatively affected soybean growth traits in control or SCN-infected plants. Our findings suggest that a phytochemical-based approach could offer an effective, more environmentally friendly solution to facilitate current SCN management strategies and fast-track the development of biopesticides to sustainably manage devastating pests such as SCN.  more » « less
Award ID(s):
2318746
PAR ID:
10521040
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
MDPI
Date Published:
Journal Name:
Plants
Volume:
13
Issue:
2
ISSN:
2223-7747
Page Range / eLocation ID:
319
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. There is a need to develop new and sustainable agricultural technologies to help provide global food security, and nanoscale materials show promising results in this area. In this study, mesoporous silica nanoparticles (MSNs) and chitosan-coated mesoporous silica nanoparticles (CTS-MSNs) were synthesized and applied to soybeans (Glycine max) by two different strategies in greenhouse and field studies to study the role of dissolved silicic acid and chitosan in enhancing plant growth and suppressing disease damage caused by Fusarium virguliforme. Plant growth and health were assessed by measuring the soybean biomass and chlorophyll content in both healthy and Fusarium-infected plants at harvest. In the greenhouse study, foliar and seed applications with 250 mg/L nanoparticle treatments were compared. A single seed treatment of MSNs reduced disease severity by 30% and increased chlorophyll content in both healthy and infected plants by 12%. Based on greenhouse results, seed application was used in the follow-up field study and MSNs and CTS-MSNs reduced disease progression by 12 and 15%, respectively. A significant 32% increase was observed for chlorophyll content for plants treated with CTS-MSNs. Perhaps most importantly, nanoscale silica seed treatment significantly increased (23–68%) the micronutrient (Zn, Mn, Mg, K, B) content of soybean pods, suggesting a potential sustainable strategy for nano-enabled biofortification to address nutrition insecurity. Overall, these findings indicate that MSN and CTS-MSN seed treatments in soybeans enable disease suppression and increase plant health as part of a nano-enabled strategy for sustainable agriculture. 
    more » « less
  2. Abstract Plasticity in plant traits, including secondary metabolites, is critical to plant survival and competitiveness under stressful conditions. The ability of a plant to respond effectively to combined stressors can be impacted by crosstalk in biochemical pathways, resource availability and evolutionary history, but such responses remain underexplored. In particular, we know little about intraspecific variation in response to combined stressors or whether such variation is associated with the stress history of a given population.Here, we investigated the consequences of combined water and herbivory stress for plant traits, including relative growth rate, leaf morphology and various measures of phytochemistry, using a common garden ofAsclepias fascicularismilkweeds. To examine how plant trait means and plasticities depend on the history of environmental stress, seeds for the experiment were collected from across a gradient of aridity in the Great Basin, United States. We then conducted a factorial experiment crossing water limitation with herbivory.Plants responded to water limitation alone by increasing the evenness of UV‐absorbent secondary metabolites and to herbivory alone by increasing the richness of metabolites. However, plants that experienced combined water and herbivory stress exhibited similar phytochemical diversity to well‐watered control plants. This lack of plasticity in phytochemical diversity in plants experiencing combined stressors was associated with a reduction in relative growth rates.Leaf chemistry means and plasticities exhibited clinal variation corresponding to seed source water deficits. The total concentration of UV‐absorbent metabolites decreased with increasing water availability among seed sources, driven by higher concentrations of flavonol glycosides, which are hypothesized to act as antioxidants, among plants from drier sites. Plants sourced from drier sites exhibited higher plasticity in flavonol glycoside concentrations in response to water limitation, which increased phytochemical evenness, but simultaneous herbivory dampened plant responses to water limitation irrespective of seed source.Synthesis. These results suggest that climatic history can affect intraspecific phytochemical plasticity, which may confer tolerance to water limitation, but that co‐occurring herbivory disrupts such patterns. Global change is increasing the frequency and intensity of stress combinations, such that understanding intraspecific responses to combined stressors is critical for predicting the persistence of plant populations. 
    more » « less
  3. {"Abstract":["Original data and R code to accompany the manuscript: "Interaction diversity explains the maintenance of phytochemical diversity" by Susan R. Whitehead, Ethan Bass, Alexsandra Corrigan, André Kessler, and Katja Poveda Accepted for publication in Ecology Letters<\/p>\n\nAbstract: The production of complex mixtures of secondary metabolites is a ubiquitous feature of plants. Several evolutionary hypotheses seek to explain how phytochemical diversity is maintained, including the synergy hypothesis, the interaction diversity hypothesis, and the screening hypothesis. We experimentally tested predictions derived from these hypotheses by manipulating the richness and structural diversity of phenolic metabolites in the diets of eight plant consumers. Across 3940 total bioassays, there was clear support for the interaction diversity hypothesis over the synergy or screening hypotheses. The number of consumers affected by a particular phenolic composition increased with increasing richness and structural diversity of compounds. Furthermore, the bioactivity of phenolics was consumer-specific. All compounds tested reduced the performance of at least one consumer, but no compounds affected all consumers. These results show how phytochemical diversity may be maintained in nature by a complex selective landscape exerted by diverse communities of plant consumers.<\/p>\n\nhttps://github.com/WhiteheadLabVT/Phytochemical-Diversity-Experiment/releases/tag/v1.0.0<\/p>"]} 
    more » « less
  4. Abstract As a general rule, plants defend against herbivores with multiple traits. The defense synergy hypothesis posits that some traits are more effective when co‐expressed with others compared to their independent efficacy. However, this hypothesis has rarely been tested outside of phytochemical mixtures, and seldom under field conditions. We tested for synergies between multiple defense traits of common milkweed (Asclepias syriaca) by assaying the performance of two specialist chewing herbivores on plants in natural populations. We employed regression and a novel application of random forests to identify synergies and antagonisms between defense traits. We found the first direct empirical evidence for two previously hypothesized defense synergies in milkweed (latex by secondary metabolites, latex by trichomes) and identified numerous other potential synergies and antagonisms. Our strongest evidence for a defense synergy was between leaf mass per area and low nitrogen content; given that these “leaf economic” traits typically covary in milkweed, a defense synergy could reinforce their co‐expression. We report that each of the plant defense traits showed context‐dependent effects on herbivores, and increased trait expression could well be beneficial to herbivores for some ranges of observed expression. The novel methods and findings presented here complement more mechanistic approaches to the study of plant defense diversity and provide some of the best evidence to date that multiple classes of plant defense synergize in their impact on insects. Plant defense synergies against highly specialized herbivores, as shown here, are consistent with ongoing reciprocal evolution between these antagonists. 
    more » « less
  5. null (Ed.)
    Microbiomes from maize and soybean were characterized in a long-term three-crop rotation research site, under four different land management strategies, to begin unraveling the effects of common farming practices on microbial communities. The fungal and bacterial communities of leaves, stems, and roots in host species were characterized across the growing season using amplicon sequencing and compared with the results of a similar study on wheat. Communities differed across hosts and among plant growth stages and organs, and these effects were most pronounced in the bacterial communities of the wheat and maize phyllosphere. Roots consistently showed the highest number of bacterial operational taxonomic units compared with aboveground organs, whereas the α-diversity of fungi was similar between above- and belowground organs. Network analyses identified putatively influential members of the microbial communities of the three host plant species. The fungal taxa specific to roots, stems, or leaves were examined to determine whether the specificity reflected their life histories based on previous studies. The analysis suggests that fungal spore traits are drivers of organ specificity in the fungal community. Identification of influential taxa in the microbial community and understanding how community structure of specific crop organs is formed will provide a critical resource for manipulations of microbial communities. The ability to predict how organ-specific communities are influenced by spore traits will enhance our ability to introduce them sustainably. 
    more » « less