skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: VCFloat2: Floating-Point Error Analysis in Coq
The development of sound and efficient tools that automatically perform floating-point round-off error analysis is an active area of research with applications to embedded systems and scientific computing. In this paper we describe VCFloat2, a novel extension to the VCFloat tool for verifying floating-point C programs in Coq. Like VCFloat1, VCFloat2 soundly and automatically computes round-off error bounds on floating-point expressions, but does so to higher accuracy; with better performance; with more generality for nonstandard number formats; with the ability to reason about external (user-defined or library) functions; and with improved modularity for interfacing with other program verification tools in Coq. We evaluate the performance of VCFloat2 using common benchmarks; compared to other state-of-the art tools, VCFloat2 computes competitive error bounds and transparent certificates that require less time for verification.  more » « less
Award ID(s):
2219757 2219758
PAR ID:
10521061
Author(s) / Creator(s):
;
Publisher / Repository:
ACM
Date Published:
ISBN:
9798400704888
Page Range / eLocation ID:
14 to 29
Subject(s) / Keyword(s):
floating point round-off error analysis
Format(s):
Medium: X
Location:
London UK
Sponsoring Org:
National Science Foundation
More Like this
  1. Reasoning about mixed real and floating-point constraints is essential for developing accurate analysis tools for floating-point programs. This paper presents FPRoCK, a prototype tool for solving mixed real and floating-point formulas. FPRoCK transforms a mixed formula into an equisatisfiable one over the reals. This formula is then solved using an off-the-shelf SMT solver. FPRoCK is also integrated with the PRECiSA static analyzer, which computes a sound estimation of the round-off error of a floating-point program. It is used to detect infeasible computational paths, thereby improving the accuracy of PRECiSA. 
    more » « less
  2. Our RLibm project has recently proposed methods to generate a single implementation for an elementary function that produces correctly rounded results for multiple rounding modes and representations with up to 32-bits. They are appealing for developing fast reference libraries without double rounding issues. The key insight is to build polynomial approximations that produce the correctly rounded result for a representation with two additional bits when compared to the largest target representation and with the “non-standard” round-to-odd rounding mode, which makes double rounding the RLibm math library result to any smaller target representation innocuous. The resulting approximations generated by the RLibm approach are implemented with machine supported floating-point operations with the round-to-nearest rounding mode. When an application uses a rounding mode other than the round-to-nearest mode, the RLibm math library saves the application’s rounding mode, changes the system’s rounding mode to round-to-nearest, computes the correctly rounded result, and restores the application’s rounding mode. This frequent change of rounding modes has a performance cost. This paper proposes two new methods, which we call rounding-invariant outputs and rounding-invariant input bounds, to avoid the frequent changes to the rounding mode and the dependence on the round-to-nearest mode. First, our new rounding-invariant outputs method proposes using the round-to-zero rounding mode to implement RLibm’s polynomial approximations. We propose fast, error-free transformations to emulate a round-to-zero result from any standard rounding mode without changing the rounding mode. Second, our rounding-invariant input bounds method factors any rounding error due to different rounding modes using interval bounds in the RLibm pipeline. Both methods make a different set of trade-offs and improve the performance of resulting libraries by more than 2× 
    more » « less
  3. Backward error analysisoffers a method for assessing the quality of numerical programs in the presence of floating-point rounding errors. However, techniques from the numerical analysis literature for quantifying backward error require substantial human effort, and there are currently no tools or automated methods for statically deriving sound backward error bounds. To address this gap, we propose Bean, a typed first-order programming language designed to express quantitative bounds on backward error. Bean’s type system combines a graded coeffect system with strict linearity to soundly track the flow of backward error through programs. We prove the soundness of our system using a novel categorical semantics, where every Bean program denotes a triple of related transformations that together satisfy a backward error guarantee. To illustrate Bean’s potential as a practical tool for automated backward error analysis, we implement a variety of standard algorithms from numerical linear algebra in Bean, establishing fine-grained backward error bounds via typing in a compositional style. We also develop a prototype implementation of Bean that infers backward error bounds automatically. Our evaluation shows that these inferred bounds match worst-case theoretical relative backward error bounds from the literature, underscoring Bean’s utility in validating a key property of numerical programs:numerical stability. 
    more » « less
  4. We present MLCERT, a novel system for doing practical mechanized proof of the generalization of learning procedures, bounding expected error in terms of training or test error. MLCERT is mechanized in that we prove generalization bounds inside the theorem prover Coq; thus the bounds are machine checked by Coq’s proof checker. MLCERT is practical in that we extract learning procedures defined in Coq to executable code; thus procedures with proved generalization bounds can be trained and deployed in real systems. MLCERT is well documented and open source; thus we expect it to be usable even by those without Coq expertise. To validate MLCERT, which is compatible with external tools such as TensorFlow, we use it to prove generalization bounds on neural networks trained using TensorFlow on the extended MNIST data set. 
    more » « less
  5. Algorithms operating on real numbers are implemented as floating-point computations in practice, but floatingpoint operations introduceroundoff errorsthat can degrade the accuracy of the result. We propose Λ num , a functional programming language with a type system that can express quantitative bounds on roundoff error. Our type system combines a sensitivity analysis, enforced through a linear typing discipline, with a novel graded monad to track the accumulation of roundoff errors. We prove that our type system is sound by relating the denotational semantics of our language to the exact and floating-point operational semantics. To demonstrate our system, we instantiate Λ num with error metrics proposed in the numerical analysis literature and we show how to incorporate rounding operations that faithfully model aspects of the IEEE 754 floating-point standard. To show that Λ num can be a useful tool for automated error analysis, we develop a prototype implementation for Λ num that infers error bounds that are competitive with existing tools, while often running significantly faster. Finally, we consider semantic extensions of our graded monad to bound error under more complex rounding behaviors, such as non-deterministic and randomized rounding. 
    more » « less