Priority effects, where arrival order and initial relative abundance modulate local species interactions, can exert taxonomic, functional, and evolutionary influences on ecological communities by driving them to alternative states. It remains unclear if these wide-ranging consequences of priority effects can be explained systematically by a common underlying factor. Here, we identify such a factor in an empirical system. In a series of field and laboratory studies, we focus on how pH affects nectar-colonizing microbes and their interactions with plants and pollinators. In a field survey, we found that nectar microbial communities in a hummingbird-pollinated shrub, Diplacus (formerly Mimulus ) aurantiacus , exhibited abundance patterns indicative of alternative stable states that emerge through domination by either bacteria or yeasts within individual flowers. In addition, nectar pH varied among D. aurantiacus flowers in a manner that is consistent with the existence of these alternative stable states. In laboratory experiments, Acinetobacter nectaris , the bacterium most commonly found in D. aurantiacus nectar, exerted a strongly negative priority effect against Metschnikowia reukaufii , the most common nectar-specialist yeast, by reducing nectar pH. This priority effect likely explains the mutually exclusive pattern of dominance found in the field survey. Furthermore, experimental evolution simulating hummingbird-assisted dispersal between flowers revealed that M. reukaufii could evolve rapidly to improve resistance against the priority effect if constantly exposed to A. nectaris -induced pH reduction. Finally, in a field experiment, we found that low nectar pH could reduce nectar consumption by hummingbirds, suggesting functional consequences of the pH-driven priority effect for plant reproduction. Taken together, these results show that it is possible to identify an overarching factor that governs the eco-evolutionary dynamics of priority effects across multiple levels of biological organization.
more »
« less
Niche-Based Priority Effects Predict Microbe Resistance to Erwinia amylovora in Pear Nectar
Fire blight is a devastating disease affecting pome fruit trees that is caused by Erwinia amylovora and leads to substantial annual losses worldwide. While antibiotic-based management approaches like streptomycin can be effective, there are concerns over evolved resistance of the pathogen and non-target effects on beneficial microbes and insects. Using microbial biological control agents (mBCAs) to combat fire blight has promise, but variable performance necessitates the discovery of more effective solutions. Here we used a niche-based predictive framework to assess the strength of priority effects exerted by prospective mBCAs, and the mechanisms behind growth suppression in floral nectar. Through in vitro and in vivo assays, we show that antagonist impacts on nectar pH and sucrose concentration were the primary predictors of priority effects. Surprisingly, overlap in amino acid use, and the degree of phylogenetic relatedness between mBCA and Erwinia did not significantly predict pathogen suppression in vitro, suggesting that competition for limited shared resources played a lesser role than alterations in the chemical environment created by the initial colonizing species. We also failed to detect an association between our measures of in vitro and in vivo Erwinia suppression, suggesting other mechanisms may dictate mBCA establishment and efficacy in flowers, including priming of host defenses.
more »
« less
- PAR ID:
- 10521124
- Publisher / Repository:
- bioRxiv
- Date Published:
- Format(s):
- Medium: X
- Institution:
- bioRxiv
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT Priority effects, where the order and timing of species arrival influence the assembly of ecological communities, have been observed in a variety of taxa and habitats. However, the genetic and molecular basis of priority effects remains unclear, hindering a better understanding of when priority effects will be strong. We sought to gain such an understanding for the nectar yeastMetschnikowia reukaufiicommonly found in the nectar of our study plant, the hummingbird‐pollinatedDiplacus(Mimulus)aurantiacus. In this plant,M.reukaufiican experience strong priority effects when it reaches flowers after other nectar yeasts, such asM.rancensis. After inoculation into two contrasting types of synthetic nectar simulating early arrival ofM.rancensis, we conducted whole‐transcriptome sequencing of 108 strains ofM.reukaufii. We found that several genes were differentially expressed inM.reukaufiistrains when the nectar had been conditioned by growth ofM.rancensis. Many of these genes were associated with amino acid metabolism, suggesting thatM.reukaufiistrains responded molecularly to the reduction in amino acid availability caused byM.rancensis. Furthermore, investigation of expression quantitative trait loci (eQTLs) revealed that genes involved in amino acid transport and resistance to antifungal compounds were enriched in some genetic variants ofM.reukaufii. We also found that gene expression was associated with population growth rate, particularly when amino acids were limited. These results suggest that intraspecific genetic variation in the ability of nectar yeasts to respond to nutrient limitation and direct fungal competition underpins priority effects in this microbial system.more » « less
-
Abstract Bumble bees can benefit from fungi, though the mechanisms underlying these benefits remain unknown and could include nutrition, resource supplementation, or pathogen protection. We tested how adding living yeasts or their metabolic products toBombus impatiensdiets in a factorial experiment affects microcolony performance, including survival, reproduction, and pathogen presence. We additionally assessed effects of yeast treatments on diet (nectar and pollen) chemical composition using untargeted metabolomics. Yeasts impacted microcolony reproduction and survival, but effects depended on source colony. Colonies containing the putative pathogenAspergillusshowed reduced reproduction, but yeast treatments reducedAspergillusprevalence. Yeast treatments altered chemical composition of nectar and pollen, but most distinguishing compounds were unidentified. Our results suggest limited direct effects of yeasts via nutrition, resource supplementation, or modification of diets, instead suggesting that yeasts may benefit bees through interactions with the pathogens includingAspergillus. Overall, the effects of yeast supplementation are context-dependent, and more research is necessary to better understand the factors important in determining their impacts on bee hosts.more » « less
-
Management of Monilinia laxa, the causal agent of brown rot blossom blight in almond (Prunus dulcis), relies heavily on the use of chemical fungicides during bloom. However, chemical fungicides can have nontarget effects on beneficial arthropods, including pollinators, and select for resistance in the pathogen of concern. Almond yield is heavily reliant on successful pollination by healthy honey bees (Apis mellifera); thus, identifying sustainable, effective, and pollinator-friendly control methods for blossom blight during bloom is desirable. Flower-inhabiting microbes could provide a natural, sustainable form of biocontrol for M. laxa, while potentially minimizing costly nontarget effects on almond pollinators and the services they provide. As pollinators are sensitive to floral microbes and their associated taste and scent cues, assessing effects of prospective biocontrol species on pollinator attraction is also necessary. Here, our objective was to isolate and identify potential biocontrol microbes from an array of agricultural and natural flowering hosts and test their efficacy in suppressing M. laxa growth in culture. Out of an initial 287 bacterial and fungal isolates identified, 56 were screened using a dual culture plate assay. Most strains reduced M. laxa growth in vitro. Ten particularly effective candidate microbes were further screened for their effect on honey bee feeding. Of the 10, nine were found to both strongly suppress M. laxa growth in culture and not reduce honey bee feeding. These promising results suggest a number of strong candidates for augmentative microbial biocontrol of brown rot blossom blight in almond with potentially minimal effects on honey bee pollination.more » « less
-
Modern coexistence theory is increasingly used to explain how differences between competing species lead to coexistence versus competitive exclusion. Although research testing this theory has focused on deterministic cases of competitive exclusion, in which the same species always wins, mounting evidence suggests that competitive exclusion is often historically contingent, such that whichever species happens to arrive first excludes the other. Coexistence theory predicts that historically contingent exclusion, known as priority effects, will occur when large destabilizing differences (positive frequency-dependent growth rates of competitors), combined with small fitness differences (differences in competitors’ intrinsic growth rates and sensitivity to competition), create conditions under which neither species can invade an established population of its competitor. Here we extend the empirical application of modern coexistence theory to determine the conditions that promote priority effects. We conducted pairwise invasion tests with four strains of nectar-colonizing yeasts to determine how the destabilizing and fitness differences that drive priority effects are altered by two abiotic factors characterizing the nectar environment: sugar concentration and pH. We found that higher sugar concentrations increased the likelihood of priority effects by reducing fitness differences between competing species. In contrast, higher pH did not change the likelihood of priority effects, but instead made competition more neutral by bringing both fitness differences and destabilizing differences closer to zero. This study demonstrates how the empirical partitioning of priority effects into fitness and destabilizing components can elucidate the pathways through which environmental conditions shape competitive interactions.more » « less
An official website of the United States government

