Quantum Computing has attracted much research attention because of its potential to achieve fundamental speed and efficiency improvements in various domains. Among different quantum algorithms, Parameterized Quantum Circuits (PQC) for Quantum Machine Learning (QML) show promises to realize quantum advantages on the current Noisy Intermediate-Scale Quantum (NISQ) Machines. Therefore, to facilitate the QML and PQC research, a recent python library called TorchQuantum has been released. It can construct, simulate, and train PQC for machine learning tasks with high speed and convenient debugging supports. Besides quantum for ML, we want to raise the community's attention on the reversed direction: ML for quantum. Specifically, the TorchQuantum library also supports using data-driven ML models to solve problems in quantum system research, such as predicting the impact of quantum noise on circuit fidelity and improving the quantum circuit compilation efficiency. This paper presents a case study of the ML for quantum part in TorchQuantum. Since estimating the noise impact on circuit reliability is an essential step toward understanding and mitigating noise, we propose to leverage classical ML to predict noise impact on circuit fidelity. Inspired by the natural graph representation of quantum circuits, we propose to leverage a graph transformer model to predict the noisy circuit fidelity. We firstly collect a large dataset with a variety of quantum circuits and obtain their fidelity on noisy simulators and real machines. Then we embed each circuit into a graph with gate and noise properties as node features, and adopt a graph transformer to predict the fidelity. We can avoid exponential classical simulation cost and efficiently estimate fidelity with polynomial complexity. Evaluated on 5 thousand random and algorithm circuits, the graph transformer predictor can provide accurate fidelity estimation with RMSE error 0.04 and outperform a simple neural network-based model by 0.02 on average. It can achieve 0.99 and 0.95 R2 scores for random and algorithm circuits, respectively. Compared with circuit simulators, the predictor has over 200× speedup for estimating the fidelity. The datasets and predictors can be accessed in the TorchQuantum library.
more »
« less
ClimSim: A large multi-scale dataset for hybrid physics-ML climate emulation
Modern climate projections lack adequate spatial and temporal resolution due to computational constraints. A consequence is inaccurate and imprecise predictions of critical processes such as storms. Hybrid methods that combine physics with machine learning (ML) have introduced a new generation of higher fidelity climate simulators that can sidestep Moore's Law by outsourcing compute-hungry, short, high-resolution simulations to ML emulators. However, this hybrid ML-physics simulation approach requires domain-specific treatment and has been inaccessible to ML experts because of lack of training data and relevant, easy-to-use workflows. We present ClimSim, the largest-ever dataset designed for hybrid ML-physics research. It comprises multi-scale climate simulations, developed by a consortium of climate scientists and ML researchers. It consists of 5.7 billion pairs of multivariate input and output vectors that isolate the influence of locally-nested, high-resolution, high-fidelity physics on a host climate simulator's macro-scale physical state.The dataset is global in coverage, spans multiple years at high sampling frequency, and is designed such that resulting emulators are compatible with downstream coupling into operational climate simulators. We implement a range of deterministic and stochastic regression baselines to highlight the ML challenges and their scoring. The data (https://huggingface.co/datasets/LEAP/ClimSim_high-res) and code (https://leap-stc.github.io/ClimSim) are released openly to support the development of hybrid ML-physics and high-fidelity climate simulations for the benefit of science and society.
more »
« less
- Award ID(s):
- 2218197
- PAR ID:
- 10521152
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- Neurips
- Date Published:
- ISSN:
- 1049-5258
- ISBN:
- 9781713829546
- Format(s):
- Medium: X
- Location:
- New Orleans
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We introduce a hybrid model that synergistically combines machine learning (ML) with semiconductor device physics to simulate nanoscale transistors. This approach integrates a physics-based ballistic transistor model with an ML model that predicts ballisticity, enabling flexibility to interface the model with device data. The inclusion of device physics not only enhances the interpretability of the ML model but also streamlines its training process, reducing the necessity for extensive training data. The model's effectiveness is validated on both silicon nanotransistors and carbon nanotube FETs, demonstrating high model accuracy with a simplified ML component. We assess the impacts of various ML models—Multilayer Perceptron (MLP), Recurrent Neural Network (RNN), and RandomForestRegressor (RFR)—on predictive accuracy and training data requirements. Notably, hybrid models incorporating these components can maintain high accuracy with a small training dataset, with the RNN-based model exhibiting better accuracy compared to the MLP and RFR models. The trained hybrid model provides significant speedup compared to device simulations, and can be applied to predict circuit characteristics based on the modeled nanotransistors.more » « less
-
Abstract Climate emulators are a powerful instrument for climate modeling, especially in terms of reducing the computational load for simulating spatiotemporal processes associated with climate systems. The most important type of emulators are statistical emulators trained on the output of an ensemble of simulations from various climate models. However, such emulators oftentimes fail to capture the “physics” of a system that can be detrimental for unveiling critical processes that lead to climate tipping points. Historically, statistical mechanics emerged as a tool to resolve the constraints on physics using statistics. We discuss how climate emulators rooted in statistical mechanics and machine learning can give rise to new climate models that are more reliable and require less observational and computational resources. Our goal is to stimulate discussion on how statistical climate emulators can further be improved with the help of statistical mechanics which, in turn, may reignite the interest of statistical community in statistical mechanics of complex systems.more » « less
-
Abstract We discuss the emerging advances and opportunities at the intersection of machine learning (ML) and climate physics, highlighting the use of ML techniques, including supervised, unsupervised, and equation discovery, to accelerate climate knowledge discoveries and simulations. We delineate two distinct yet complementary aspects: (a) ML for climate physics and (b) ML for climate simulations. Although physics-free ML-based models, such as ML-based weather forecasting, have demonstrated success when data are abundant and stationary, the physics knowledge and interpretability of ML models become crucial in the small-data/nonstationary regime to ensure generalizability. Given the absence of observations, the long-term future climate falls into the small-data regime. Therefore, ML for climate physics holds a critical role in addressing the challenges of ML for climate simulations. We emphasize the need for collaboration among climate physics, ML theory, and numerical analysis to achieve reliable ML-based models for climate applications.more » « less
-
The growing resolution and volume of climate data from remote sensing and simulations pose significant storage, processing, and computational challenges. Traditional compression or subsampling methods often compromise data fidelity, limiting scientific insights. We introduce a scalable ecosystem that integrates hierarchical multiresolution data management, intelligent transmission, and ML-assisted reconstruction to balance accuracy and efficiency. Our approach reduces storage and computational costs by 99%, lowering expenses from $100,000 to $24 while maintaining a Root Mean Square (RMS) error of 1.46 degrees Celsius. Our experimental results confirm that even with significant data reduction, essential features required for accurate climate analysis are preserved. Validated on petascale NASA climate datasets, this solution enables cost-effective, high-fidelity climate analysis for research and decision-makingmore » « less
An official website of the United States government

