skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Microsecond time-resolved X-ray scattering by utilizing MHz repetition rate at second-generation XFELs
Abstract Detecting microsecond structural perturbations in biomolecules has wide relevance in biology, chemistry and medicine. Here we show how MHz repetition rates at X-ray free-electron lasers can be used to produce microsecond time-series of protein scattering with exceptionally low noise levels of 0.001%. We demonstrate the approach by examining Jɑ helix unfolding of a light-oxygen-voltage photosensory domain. This time-resolved acquisition strategy is easy to implement and widely applicable for direct observation of structural dynamics of many biochemical processes.  more » « less
Award ID(s):
2153503 1943448
PAR ID:
10521165
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Methods
Volume:
21
Issue:
9
ISSN:
1548-7091
Format(s):
Medium: X Size: p. 1608-1611
Size(s):
p. 1608-1611
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper, we evaluate the use of a trained Long Short-Term Memory (LSTM) network as a surrogate for a Euler–Bernoulli beam model, and then we describe and characterize an FPGA-based deployment of the model for use in real-time structural health monitoring applications. The focus of our efforts is the DROPBEAR (Dynamic Reproduction of Projectiles in Ballistic Environments for Advanced Research) dataset, which was generated as a benchmark for the study of real-time structural modeling applications. The purpose of DROPBEAR is to evaluate models that take vibration data as input and give the initial conditions of the cantilever beam on which the measurements were taken as output. DROPBEAR is meant to serve an exemplar for emerging high-rate “active structures” that can be actively controlled with feedback latencies of less than one microsecond. Although the Euler–Bernoulli beam model is a well-known solution to this modeling problem, its computational cost is prohibitive for the time scales of interest. It has been previously shown that a properly structured LSTM network can achieve comparable accuracy with less workload, but achieving sub-microsecond model latency remains a challenge. Our approach is to deploy the LSTM optimized specifically for latency on FPGA. We designed the model using both high-level synthesis (HLS) and hardware description language (HDL). The lowest latency of 1.42 µS and the highest throughput of 7.87 Gops/s were achieved on Alveo U55C platform for HDL design. 
    more » « less
  2. Abstract Structures operating in high-rate dynamic environments, such as hypersonic vehicles, orbital space infrastructure, and blast mitigation systems, require microsecond (μs) decision-making. Advances in real-time sensing, edge-computing, and high-bandwidth computer memory are enabling emerging technologies such as High-rate structural health monitoring (HR-SHM) to become more feasible. Due to the time restrictions such systems operate under, a target of 1 millisecond (ms) from event detection to decision-making is set at the goal to enable HR-SHM. With minimizing latency in mind, a data-driven method that relies on time-series measurements processed in real-time to infer the state of the structure is investigated in this preliminary work. A methodology for deploying LSTM-based state estimators for structures using subsampled time-series vibration data is presented. The proposed estimator is deployed to an embedded real-time device and the achieved accuracy along with system timing are discussed. The proposed approach has shown potential for high-rate state estimation as it provides sufficient accuracy for the considered structure while a time-step of 2.5 ms is achieved. The Contributions of this work are twofold: 1) a framework for deploying LSTM models in real-time for high-rate state estimation, 2) an experimental validation of LSTMs running on a real-time computing system. 
    more » « less
  3. Abstract The Angiotensin II Type 1 (AT1) receptor is one of the most widely studied GPCRs within the context of biased signaling. While the AT1 receptor is activated by agonists such as the peptide AngII, it can also be activated by mechanical stimuli such as membrane stretch or shear in the absence of a ligand. Despite the importance of mechanical activation of the AT1 receptor in biological processes such as vasoconstriction, little is known about the structural changes induced by external physical stimuli mediated by the surrounding lipid membrane. Here, we present a systematic simulation study that characterizes the activation of the AT1 receptor under various membrane environments and mechanical stimuli. We show that stability of the active state is highly sensitive to membrane thickness and tension. Structural comparison of membrane-mediated vs. agonist-induced activation shows that the AT1 receptor has distinct active conformations. This is supported by multi-microsecond free energy calculations that show unique landscapes for the inactive and various active states. Our modeling results provide structural insights into the mechanical activation of the AT1 receptor and how it may produce different functional outcomes within the framework of biased agonism. 
    more » « less
  4. The upgrade of the European Synchrotron Radiation Facility (ESRF) in Grenoble, France to an Extremely Brilliant Source (EBS) is expected to enable time-resolved synchrotron serial crystallography (SSX) experiments with sub-millisecond time resolution. ID29 is a new beamline dedicated to SSX experiments at ESRF–EBS. Here, we report experiments emerging from the initial phase of user operation at ID29. We first used microcrystals of photoactive yellow protein as a model system to exploit the potential of microsecond pulses for SSX. Subsequently, we investigated microcrystals of cytochromecnitrite reductase (ccNiR) with microsecond X-ray pulses. CcNiR is a decaheme protein that is ideal for the investigation of radiation damage at the various heme-iron sites. Finally, we performed a proof-of-concept subsecond time-resolved SSX experiment by photoactivating microcrystals of a myxobacterial phytochrome. 
    more » « less
  5. Temporal analysis of sound is fundamental to auditory processing throughout the animal kingdom. Echolocating bats are powerful models for investigating the underlying mechanisms of auditory temporal processing, as they show microsecond precision in discriminating the timing of acoustic events. However, the neural basis for microsecond auditory discrimination in bats has eluded researchers for decades. Combining extracellular recordings in the midbrain inferior colliculus (IC) and mathematical modeling, we show that microsecond precision in registering stimulus events emerges from synchronous neural firing, revealed through low-latency variability of stimulus-evoked extracellular field potentials (EFPs, 200–600 Hz). The temporal precision of the EFP increases with the number of neurons firing in synchrony. Moreover, there is a functional relationship between the temporal precision of the EFP and the spectrotemporal features of the echolocation calls. In addition, EFP can measure the time difference of simulated echolocation call–echo pairs with microsecond precision. We propose that synchronous firing of populations of neurons operates in diverse species to support temporal analysis for auditory localization and complex sound processing. 
    more » « less