skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Optimization of the fluorogen-activating protein tag for quantitative protein trafficking and colocalization studies in S. cerevisiae
Spatial and temporal tracking of fluorescent proteins (FPs) in live cells permits visualization of proteome remodeling in response to extracellular cues. Historically, protein dynamics during trafficking have been visualized using constitutively active FPs fused to proteins of interest. While powerful, such FPs label all cellular pools of a protein, potentially masking the dynamics of select subpopulations. To help study protein subpopulations, bioconjugate tags, including the fluorogen activation proteins (FAPs), were developed. FAPs are comprised of two components: a single-chain antibody (SCA) fused to the protein of interest and a malachite-green (MG) derivative, which fluoresces only when bound to the SCA. Importantly, the MG derivatives can be either cell-permeant or -impermeant, thus permitting isolated detection of SCA-tagged proteins at the cell surface and facilitating quantitative endocytic measures. To expand FAP use in yeast, we optimized the SCA for yeast expression, created FAP-tagging plasmids, and generated FAP-tagged organelle markers. To demonstrate FAP efficacy, we coupled the SCA to the yeast G-protein coupled receptor Ste3. We measured Ste3 endocytic dynamics in response to pheromone and characterized cis- and trans-acting regulators of Ste3. Our work significantly expands FAP technology for varied applications in S. cerevisiae.  more » « less
Award ID(s):
2321624
PAR ID:
10521271
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Editor(s):
Miller, Elizabeth
Publisher / Repository:
Molecular Biology of the Cell
Date Published:
Journal Name:
Molecular Biology of the Cell
Volume:
35
Issue:
7
ISSN:
1059-1524
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Clathrin-mediated endocytosis is an essential cellular pathway that enables signaling and recycling of transmembrane proteins and lipids. During endocytosis, dozens of cytosolic proteins come together at the plasma membrane, assembling into a highly interconnected network that drives endocytic vesicle biogenesis. Recently, multiple groups have reported that early endocytic proteins form flexible condensates, which provide a platform for efficient assembly of endocytic vesicles. Given the importance of this network in the dynamics of endocytosis, how might cells regulate its stability? Many receptors and endocytic proteins are ubiquitylated, while early endocytic proteins such as Eps15 contain ubiquitin-interacting motifs. Therefore, we examined the influence of ubiquitin on the stability of the early endocytic protein network. In vitro, we found that recruitment of small amounts of polyubiquitin dramatically increased the stability of Eps15 condensates, suggesting that ubiquitylation could nucleate endocytic assemblies. In live cell imaging experiments, a version of Eps15 that lacked the ubiquitin-interacting motif failed to rescue defects in endocytic initiation created by Eps15 knockout. Furthermore, fusion of Eps15 to a deubiquitylase enzyme destabilized nascent endocytic sites within minutes. In both in vitro and live cell settings, dynamic exchange of Eps15 proteins, a measure of protein network stability, was decreased by Eps15-ubiquitin interactions and increased by loss of ubiquitin. These results collectively suggest that ubiquitylation drives assembly of the flexible protein network responsible for catalyzing endocytic events. More broadly, this work illustrates a biophysical mechanism by which ubiquitylated transmembrane proteins at the plasma membrane could regulate the efficiency of endocytic internalization. 
    more » « less
  2. Abstract Fluorescence‐activating proteins (FAPs) that bind a chromophore and activate its fluorescence have gained popularity in bioimaging. The fluorescence‐activating and absorption‐shifting tag (FAST) is a light‐weight FAP that enables fast reversible fluorogen binding, thus advancing multiplex and super‐resolution imaging. However, the rational design of FAST‐specific fluorogens with large fluorescence enhancement (FE) remains challenging. Herein, a new fluorogen directly engineered from green fluorescent protein (GFP) chromophore by a unique double‐donor‐one‐acceptor strategy, which exhibits an over 550‐fold FE upon FAST binding and a high extinction coefficient of approximately 100,000 M−1 cm−1, is reported. Correlation analysis of the excited state nonradiative decay rates and environmental factors reveal that the large FE is caused by nonpolar protein−fluorogen interactions. Our deep insights into structure‐function relationships could guide the rational design of bright fluorogens for live‐cell imaging with extended spectral properties such as redder emissions. 
    more » « less
  3. Abstract Fibro‐adipogenic progenitor cells (FAPs) are mesenchymal stem cells that produce extracellular matrix (ECM) and intramuscular adipocytes in skeletal muscle. While FAPs have demonstrated responsiveness to their physical environment, there is limited knowledge of how the ECM substrate of FAPs impacts their differentiation, particularly in livestock animals. We hypothesized that the ECM substrate FAPs are cultured on will differentially impact their adherence, proliferation, and differentiation. Through an initial screen of 9 ECM proteins and their combinations, significant variation of bovine FAP attachment and differentiation across coatings was observed. The ECM substrates fibronectin, collagen 6, vitronectin, and a combination of fibronectin and collagen 6 were selected for further testing. Notably, fibronectin increased cell proliferation and attachment rates, without impairing FAP adipogenic or fibrogenic differentiation compared to the other coatings. Benefits of fibronectin were maintained at lower concentrations and when combined with less favorable coatings such as collagen 6. When assessed for their adipogenic potential on each coating at different substrate stiffnesses, lipid accumulation decreased with increasing substrate stiffness, while cell attachment increased on stiffer substrates. Overall, these results demonstrate the high responsiveness of FAPs to their ECM substrate, along with highlighting fibronectin as a preferred substrate for in vitro experiments with bovine FAPs. 
    more » « less
  4. Determining the precise localization of interacting proteins provides fundamental insight into their putative function. Classically, immunolabeling of endogenous proteins or generating tagged versions of proteins has been used to localize interacting proteins. However, in many cases, the interacting partner of a protein of interest is unknown. For cell surface proteins, it is possible to determine the localization of interacting proteins if one of the binding partners is known. This approach is based on generating purified, recombinant, tagged extracellular domains (ECDs) of a protein of interest, and incubating tissue to allow the recombinant protein to bind to its interacting partner(s). In this protocol, we detail the cloning of secreted, tagged ECDs from cell surface proteins, transfection of cloned plasmids into S2 cells, collection of secreted domains, concentration of the cell culture medium to enrich for the ECDs, and labeling of tissue with these ECDs. 
    more » « less
  5. Abstract The auxin-inducible degradation system has been widely adopted in the Caenorhabditis elegans research community for its ability to empirically control the spatiotemporal expression of target proteins. This system can efficiently degrade auxin-inducible degron (AID)-tagged proteins via the expression of a ligand-activatable AtTIR1 protein derived from A. thaliana that adapts target proteins to the endogenous C. elegans proteasome. While broad expression of AtTIR1 using strong, ubiquitous promoters can lead to rapid degradation of AID-tagged proteins, cell type-specific expression of AtTIR1 using spatially restricted promoters often results in less efficient target protein degradation. To circumvent this limitation, we have developed an FLP/FRT3-based system that functions to reanimate a dormant, high-powered promoter that can drive sufficient AtTIR1 expression in a cell type-specific manner. We benchmark the utility of this system by generating a number of tissue-specific FLP-ON::TIR1 drivers to reveal genetically separable cell type-specific phenotypes for several target proteins. We also demonstrate that the FLP-ON::TIR1 system is compatible with enhanced degron epitopes. Finally, we provide an expandable toolkit utilizing the basic FLP-ON::TIR1 system that can be adapted to drive optimized AtTIR1 expression in any tissue or cell type of interest. 
    more » « less