Abstract One important feature of the Greenland Ice Sheet (GrIS) change is its strong seasonal fluctuation. Taking advantage of deployed seismographic stations in Greenland, we apply cross‐component auto‐correlation of seismic ambient noise to measure in‐situ near surface relative velocity change (dv/v) in different regions of Greenland. Our results demonstrate thatdv/vmeasurements for most stations have less than 3 months lag times in comparison to the surface mass change. These various lag times may provide us constraints for the thickness of the subglacial till layer over different regions in Greenland. Moreover, in southwest Greenland, we observe a change in the long‐term trend ofdv/vfor three stations, which might be consistent with the mass change rate (dM/dt) due to the “2012–2013 warm‐cold transition.” These observations suggest that seismic noise auto‐correlation technique may be used to monitor both seasonal and long‐term changes of the GrIS.
more »
« less
Relative Seismic Velocity Variations at Axial Seamount Observed With Ambient Seismic Noise Capture Transition Point in Volcanic Inflation
Abstract Temporal changes in seismic velocity estimated from ambient seismic noise can be utilized to infer subsurface properties at volcanic systems. In this study, we process 7 years of continuous seismic noise at Axial Seamount and use cross‐correlation functions to calculate the relative seismic velocity changes (dv/v) beneath the caldera. We find a long‐term trend of decreasing velocity during rapid inflation, followed by slight increase in velocities as background seismicity increases and inflation rate decreases. Furthermore, we observe small short‐term increases indv/vwhich coincide with short‐term deflation events. Our observations of changes indv/vand their correlation with other geophysical data provide insights into how the top ∼1 km of the crust at Axial Seamount changes in response to subsurface magma movement and capture the transition from a period of rapid reinflation to a period where the caldera wall faults become critically stressed and must rupture to accommodate further inflation.
more »
« less
- Award ID(s):
- 1951448
- PAR ID:
- 10521396
- Publisher / Repository:
- AGU
- Date Published:
- Journal Name:
- Geophysical Research Letters
- Volume:
- 51
- Issue:
- 10
- ISSN:
- 0094-8276
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Significant imbalances in terrestrial water storage (TWS) and severe drought have been observed around the world as a consequence of climate changes. Improving our ability to monitor TWS and drought is critical for water‐resource management and water‐deficit estimation. We use continuous seismic ambient noise to monitor temporal evolution of near‐surface seismic velocity,dv/v, in central Oklahoma from 2013 to 2022. The deriveddv/vis found to be negatively correlated with gravitational measurements and groundwater depths, showing the impact of groundwater storage on seismic velocities. The hydrological effects involving droughts and recharge of groundwater occur on a multi‐year time scale and dominate the overall derived velocity changes. The thermoelastic response to atmospheric temperature variations occurs primarily on a yearly timescale and dominates the superposed seasonal velocity changes in this study. The occurrences of droughts appear simultaneously with local peaks ofdv/v, demonstrating the sensitivity of near‐surface seismic velocities to droughts.more » « less
-
Abstract The architecture of magma plumbing systems plays a fundamental role in volcano eruption and evolution. However, the precise configuration of crustal magma reservoirs and conduits responsible for supplying eruptions are difficult to explore across most active volcanic systems. Consequently, our understanding of their correlation with eruption dynamics is limited. Axial Seamount is an active submarine volcano located along the Juan de Fuca Ridge, with known eruptions in 1998, 2011, and 2015. Here we present high-resolution images of P-wave velocity, attenuation, and estimates of temperature and partial melt beneath the summit of Axial Seamount, derived from multi-parameter full waveform inversion of a 2D multi-channel seismic line. Multiple magma reservoirs, including a newly discovered western magma reservoir, are identified in the upper crust, with the maximum melt fraction of ~15–32% in the upper main magma reservoir (MMR) and lower fractions of 10% to 26% in other satellite reservoirs. In addition, a feeding conduit below the MMR with a melt fraction of ~4–11% and a low-velocity throat beneath the eastern caldera wall connecting the MMR roof with eruptive fissures are imaged. These findings delineate an asymmetric shallow plumbing system beneath Axial Seamount, providing insights into the magma pathways that fed recent eruptions.more » « less
-
Abstract Axial Seamount is an active submarine volcano located at the intersection of the Cobb hot spot and the Juan de Fuca Ridge (45°57′N, 130°01′W). Bottom pressure recorders captured co‐eruption subsidence of 2.4–3.2 m in 1998, 2011, and 2015, and campaign‐style pressure surveys every 1–2 years have provided a long‐term time series of inter‐eruption re‐inflation. The 2015 eruption occurred shortly after the Ocean Observatories Initiative (OOI) Cabled Array came online providing real‐time seismic and deformation observations for the first time. Nooner and Chadwick (2016,https://doi.org/10.1126/science.aah4666) used the available vertical deformation data to model the 2015 eruption deformation source as a steeply dipping prolate‐spheroid, approximating a high‐melt zone or conduit beneath the eastern caldera wall. More recently, Levy et al. (2018,https://doi.org/10.1130/G39978.1) used OOI seismic data to estimate dip‐slip motion along a pair of outward‐dipping caldera ring faults. This fault motion complicates the deformation field by contributing up to several centimeters of vertical seafloor motion. In this study, fault‐induced surface deformation was calculated from the slip estimates of Levy et al. (2018,https://doi.org/10.1130/G39978.1) then removed from vertical deformation data prior to model inversions. Removing fault motion resulted in an improved model fit with a new best‐fitting deformation source located 2.11 km S64°W of the source of Nooner and Chadwick (2016,https://doi.org/10.1126/science.aah4666) with similar geometry. This result shows that ring fault motion can have a significant impact on surface deformation, and future modeling efforts need to consider the contribution of fault motion when estimating the location and geometry of subsurface magma movement at Axial Seamount.more » « less
-
The Eastern Caldera Medium-Power Junction Box (MJ03E) supports geophysical instruments in the Eastern side of the 3-km-across caldera at the summit of Axial Seamount, at a water depth of ~1,520 meters. The instruments are designed to measure local seismic events associated with migration of melt and volatiles within the volcano, as well as far-field seismic events. They also measure uplift and deflation of the seafloor associated with ingress of melt within the underlying magma chamber, and collapse of the seafloor during diking-eruptive events. This site was chosen because Axial has erupted in 1988, 2011, and again in 2015. During the 2015 event, over 8,000 earthquakes were measured with the cabled geophysical array, and data were streamed live back to shore in real-time. A 635 meter-long electro-optical cable from Primary Node PN03B provides the junction box with significant power (375 V) and bandwidth (1 Gbs) to operate the instruments and transmit data to shore.more » « less
An official website of the United States government

