skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Designing surface exposed sites on Bacillus subtilis lipase A for spin-labeling and hydration studies
Spin-labeling with electron paramagnetic resonance spectroscopy (EPR) is a facile method for interrogating macromolecular flexibility, conformational changes, accessibility, and hydration. Within we present a computationally based approach for the rational selection of reporter sites in Bacillus subtilis lipase A (BSLA) for substitution to cysteine residues with subsequent modification with a spin-label that are expected to not significantly perturb the wild-type structure, dynamics, or enzymatic function. Experimental circular dichroism spectroscopy, Michaelis-Menten kinetic parameters and EPR spectroscopy data validate the success of this approach to computationally select reporter sites for future magnetic resonance investigations of hydration and hydration changes induced by polymer conjugation, tethering, immobilization, or amino acid substitution in BSLA. Analysis of molecular dynamic simulations of the impact of substitutions on the secondary structure agree well with experimental findings. We propose that this computationally guided approach for choosing spin-labeled EPR reporter sites, which evaluates relative surface accessibility coupled with hydrogen bonding occupancy of amino acids to the catalytic pocket via atomistic simulations, should be readily transferable to other macromolecular systems of interest including selecting sites for paramagnetic relaxation enhancement NMR studies, other spin-labeling EPR studies or any method requiring a tagging method where it is desirable to not alter enzyme stability or activity.  more » « less
Award ID(s):
2003366
PAR ID:
10521516
Author(s) / Creator(s):
; ; ; ; ;
Corporate Creator(s):
Editor(s):
NA
Publisher / Repository:
Biophysical chemistry
Date Published:
Journal Name:
Biophysical Chemistry
Edition / Version:
1
Volume:
308
Issue:
C
ISSN:
0301-4622
Page Range / eLocation ID:
107203
Subject(s) / Keyword(s):
Enzymatic activity Hydrogen bonding networks Lipase a Molecular dynamics Spin-labeling Thermostability
Format(s):
Medium: X Size: 3MB Other: pdf
Size(s):
3MB
Sponsoring Org:
National Science Foundation
More Like this
  1. Dr. Sudipta Maiti (Ed.)
    IA3 is a 68 amino acid natural peptide/protein inhibitor of yeast aspartic proteinase A (YPRA) that is intrinsically dis-ordered in solution with induced N-terminal helicity when in the protein complex with YPRA. Based upon the intrinsical-ly disordered proteins (IDPs) parameters of fractional net charge (FNC), of net charge density per residue (NCPR) and of charge patterning (), the two domains of IA3 are defined to occupy different domains within conformationally based subclasses of IDPs; thus, making IA3 a bimodal-domain IDP. Site-directed spin-labeling (SDSL) electron paramagnetic resonance (EPR) spectroscopy and low-field Overhauser dynamic nuclear polarization (ODNP) spectroscopy results show that these two domains possess different degrees of compaction and hydration diffusivity behavior. This work suggests that SDSL EPR line shapes – analyzed in terms of their local tumbling volume (VL) – provide insight into the compaction of the unstructured IDP ensemble in solution and that protein sequence and net charge distribution pat-terns within a conformational subclass can impact bound water hydration dynamics; thus, possibly offering an alter-native thermodynamic property that can encode conforma-tional binding and behavior of IDPs and liquid-liquid phase separations. 
    more » « less
  2. null (Ed.)
    Site-directed spin labeling (SDSL) of large RNAs for electron paramagnetic resonance (EPR) spectroscopy has remained challenging to date. We here demonstrate an efficient and generally applicable posttranscriptional SDSL method for large RNAs using an expanded genetic alphabet containing the NaM-TPT3 unnatural base pair (UBP). An alkyne-modified TPT3 ribonucleotide triphosphate (rTPT3 CO TP) is synthesized and site-specifically incorporated into large RNAs by in vitro transcription, which allows attachment of the azide-containing nitroxide through click chemistry. We validate this strategy by SDSL of a 419-nucleotide ribonuclease P (RNase P) RNA from Bacillus stearothermophilus under non-denaturing conditions. The effects of site-directed UBP incorporation and subsequent spin labeling on the global structure and function of RNase P are marginal as evaluated by Circular Dichroism spectroscopy, Small Angle X-ray Scattering, Sedimentation Velocity Analytical Ultracentrifugation and enzymatic assay. Continuous-Wave EPR analyses reveal that the labeling reaction is efficient and specific, and Pulsed Electron–Electron Double Resonance measurements yield an inter-spin distance distribution that agrees with the crystal structure. The labeling strategy as presented overcomes the size constraint of RNA labeling, opening new avenues of spin labeling and EPR spectroscopy for investigating the structure and dynamics of large RNAs. 
    more » « less
  3. Abstract Site‐specific dynamics in proteins are at the heart of protein function. While electron paramagnetic resonance (EPR) has potential to measure dynamics in large protein complexes, the reliance on flexible nitroxide labels is limitating especially for the accurate measurement of site‐specific β‐sheet dynamics. Here, we employed EPR spectroscopy to measure site‐specific dynamics across the surface of a protein, GB1. Through the use of the double Histidine (dHis) motif, which enables labeling with a Cu(II) – nitrilotriacetic acid (NTA) complex, dynamics information was obtained for both α‐helical and β‐sheet sites. Spectral simulations of the resulting CW‐EPR report unique site‐specific fluctuations across the surface of GB1. Additionally, we performed molecular dynamics (MD) simulations to complement the EPR data. The dynamics observed from MD agree with the EPR results. Furthermore, we observe small changes ingǁvalues for different sites, which may be due to small differences in coordination geometry and/or local electrostatics of the site. Taken together, this work expands the utility of Cu(II)NTA‐based EPR measurements to probe information beyond distance constraints. 
    more » « less
  4. Abstract This review describes the use of Electron Paramagnetic Resonance (EPR) to measure residue specific dynamics in proteins with a specific focus on Cu(II)‐based spin labels. First, we outline approaches used to measure protein motion by nitroxide‐based spin labels. Here, we describe conceptual details and outline challenges that limit the use of nitroxide spin labels to solvent‐exposed α‐helical sites. The bulk of this review showcases the use of newly developed Cu(II)‐based protein labels. In this approach, the strategic mutation of native residues on a protein to generate two neighboring Histidine residues (i.e., the dHis motif) is exploited to enable a rigid site‐selective binding of a Cu(II) complex. The chelation of the Cu(II) complex to dHis directly anchors the Cu(II) spin label to the protein backbone. The improvement in rigidity expands both the spin‐labeling toolkit as well as the resolution of many EPR measurements. We describe how EPR measurements of the Cu(II) label directly reflect backbone motion and fluctuations. The EPR are complemented by Molecular Dynamics simulations. Finally, the dHis motif provides access to the measurement of site‐specific dynamics at both α‐helices and β‐sheets. The review outlines the limitations of the dHis method and provides an outlook for future developments. 
    more » « less
  5. Electron paramagnetic resonance (EPR) based distance measurements have been exploited to measure protein–protein docking, protein–DNA interactions, substrate binding and metal coordination sites. Here, we use EPR to locate a native paramagnetic metal binding site in a protein with less than 2 Å resolution. We employ a rigid Cu 2+ binding motif, the double histidine (dHis) motif, in conjunction with double electron electron resonance (DEER) spectroscopy. Specifically, we utilize a multilateration approach to elucidate the native Cu 2+ binding site in the immunoglobulin binding domain of protein G. Notably, multilateration performed with the dHis motif required only the minimum number of four distance constraints, whereas comparable studies using flexible nitroxide-based spin labels require many more for similar precision. This methodology demonstrates a significant increase in the efficiency of structural determinations via EPR distance measurements using the dHis motif. 
    more » « less