skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: ALMA-IMF: X. The core population in the evolved W33-Main (G012.80) protocluster
Context.One of the central questions in astrophysics is the origin of the initial mass function (IMF). It is intrinsically linked to the processes from which it originates, and hence its connection with the core mass function (CMF) must be elucidated. Aims.We aim to measure the CMF in the evolved W33-Main star-forming protocluster to compare it with CMF recently obtained in other Galactic star-forming regions, including the ones that are part of the ALMA-IMF program. Methods.We used observations from the ALMA-IMF large programme: ~2′ × 2′ maps of emission from the continuum and selected lines at 1.3 mm and 3 mm observed by the ALMA 12m only antennas. Our angular resolution was typically 1″, that is, ~2400 au at a distance of 2.4 kpc. The lines we analysed are CO (2–1), SiO (5–4), N2H+ (1–0), H41α as well as He41α blended with C41α. We built a census of dense cores in the region, and we measured the associated CMF based on a core-dependent temperature value. Results.We confirmed the ‘evolved’ status of W33-Main by identifiying three HIIregions within the field, and to a lesser extent based on the number and extension of N2H+filaments. We produced a filtered core catalogue of 94 candidates that we refined to take into account the contamination of the continuum by free-free and line emission, obtaining 80 cores with masses that range from 0.03 to 13.2M. We fitted the resulting high-mass end of the CMF with a single power law of the form N(log(M)) ∝ Mα, obtainingα= −1.44−0.22+0.16, which is slightly steeper but consistent with the Salpeter index. We categorised our cores as prestellar and protostellar, mostly based on outflow activity and hot core nature. We found the prestellar CMF to be steeper than a Salpeter-like distribution, and the protostellar CMF to be slightly top heavy. We found a higher proportion of cores within the HIIregions and their surroundings than in the rest of the field. We also found that the cores’ masses were rather low (maximum mass of ~13M). Conclusions.We find that star formation in W33-Main could be compatible with a ‘clump-fed’ scenario of star formation in an evolved cloud characterised by stellar feedback in the form of HIIregions, and under the influence of massive stars outside the field. Our results differ from those found in less evolved young star-forming regions in the ALMA-IMF program. Further investigations are needed to elucidate the evolution of late CMFs towards the IMF over statistically significant samples.  more » « less
Award ID(s):
2008101
PAR ID:
10521527
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; « less
Publisher / Repository:
Astronomy and Astrophysics
Date Published:
Journal Name:
Astronomy & Astrophysics
Volume:
686
ISSN:
0004-6361
Page Range / eLocation ID:
A122
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Context. The origin of the stellar initial mass function (IMF) and its relation with the core mass function (CMF) are actively debated issues with important implications in astrophysics. Recent observations in the W43 molecular complex of top-heavy CMFs, with an excess of high-mass cores compared to the canonical mass distribution, raise questions about our understanding of the star formation processes and their evolution in space and time. Aims. We aim to compare populations of protostellar and prestellar cores in three regions imaged in the ALMA-IMF Large Program. Methods. We created an homogeneous core catalogue in W43, combining a new core extraction in W43-MM1 with the catalogue of W43-MM2&MM3 presented in a previous work. Our detailed search for protostellar outflows enabled us to identify between 23 and 30 protostellar cores out of 127 cores in W43-MM1 and between 42 and 51 protostellar cores out of 205 cores in W43-MM2&MM3. Cores with neither outflows nor hot core emission are classified as prestellar candidates. Results. We found a similar fraction of cores which are protostellar in the two regions, about 35%. This fraction strongly varies in mass, from f pro ≃ 15–20% at low mass, between 0.8 and 3 M ⊙ up to f pro ≃ 80% above 16 M ⊙ . Protostellar cores are found to be, on average, more massive and smaller in size than prestellar cores. Our analysis also revealed that the high-mass slope of the prestellar CMF in W43, α = -1.46 -0.19 +0.12 , is consistent with the Salpeter slope, and thus the top-heavy form measured for the global CMF, α = −0.96 ± 0.09, is due to the protostellar core population. Conclusions. Our results could be explained by ‘clump-fed’ models in which cores grow in mass, especially during the protostellar phase, through inflow from their environment. The difference between the slopes of the prestellar and protostellar CMFs moreover implies that high-mass cores grow more in mass than low-mass cores. 
    more » « less
  2. The stellar initial mass function (IMF) is critical to our understanding of star formation and the effects of young stars on their environment. On large scales, it enables us to use tracers such as UV or Hα emission to estimate the star formation rate of a system and interpret unresolved star clusters across the Universe. So far, there is little firm evidence of large-scale variations of the IMF, which is thus generally considered “universal”. Stars form from cores, and it is now possible to estimate core masses and compare the core mass function (CMF) with the IMF, which it presumably produces. The goal of the ALMA-IMF large programme is to measure the core mass function at high linear resolution (2700 au) in 15 typical Milky Way protoclusters spanning a mass range of 2.5 × 103to 32.7 × 103M. In this work, we used two different core extraction algorithms to extract ≈680 gravitationally bound cores from these 15 protoclusters. We adopted a per core temperature using the temperature estimate from the point-process mapping Bayesian method (PPMAP). A power-law fit to the CMF of the sub-sample of cores above the 1.64Mcompleteness limit (330 cores) through the maximum likelihood estimate technique yields a slope of 1.97 ± 0.06, which is significantly flatter than the 2.35 Salpeter slope. Assuming a self-similar mapping between the CMF and the IMF, this result implies that these 15 high-mass protoclusters will generate atypical IMFs. This sample currently is the largest sample that was produced and analysed self-consistently, derived at matched physical resolution, with per core temperature estimates, and cores as massive as 150M. We provide both the raw source extraction catalogues and the catalogues listing the source size, temperature, mass, spectral indices, and so on in the 15 protoclusters. 
    more » « less
  3. Aims.The processes that determine the stellar initial mass function (IMF) and its origin are critical unsolved problems, with profound implications for many areas of astrophysics. The W43-MM2&MM3 mini-starburst ridge hosts a rich young protocluster, from which it is possible to test the current paradigm on the IMF origin. Methods.The ALMA-IMF Large Program observed the W43-MM2&MM3 ridge, whose 1.3 mm and 3 mm ALMA 12 m array continuum images reach a ~2500 au spatial resolution. We used both the best-sensitivity and the line-free ALMA-IMF images, reduced the noise with the multi-resolution segmentation techniqueMnGSeg, and derived the most complete and most robust core catalog possible. Using two different extraction software packages,getsfandGExt2D, we identified ~200 compact sources, whose ~100 common sources have, on average, fluxes consistent to within 30%. We filtered sources with non-negligible free-free contamination and corrected fluxes from line contamination, resulting in a W43-MM2&MM3 catalog of 205getsfcores. With a median deconvolved FWHM size of 3400 au, core masses range from ~0.1Mto ~70Mand thegetsfcatalog is 90% complete down to 0.8M.Results.The high-mass end of the core mass function (CMF) of W43-MM2&MM3 is top-heavy compared to the canonical IMF. Fitting the cumulative CMF with a single power-law of the formN(> logM) ∝Mα, we measuredα= −0.95 ± 0.04, compared to the canonicalα= −1.35 Salpeter IMF slope. The slope of the CMF is robust with respect to map processing, extraction software packages, and reasonable variations in the assumptions taken to estimate core masses. We explore several assumptions on how cores transfer their mass to stars (assuming a mass conversion efficiency) and subfragment (defining a core fragment mass function) to predict the IMF resulting from the W43-MM2&MM3 CMF. While core mass growth should flatten the high-mass end of the resulting IMF, core fragmentation could steepen it. Conclusions.In stark contrast to the commonly accepted paradigm, our result argues against the universality of the CMF shape. More robust functions of the star formation efficiency and core subfragmentation are required to better predict the resulting IMF, here suggested to remain top-heavy at the end of the star formation phase. If confirmed, the IMFs emerging from starburst events could inherit their top-heavy shape from their parental CMFs, challenging the IMF universality. 
    more » « less
  4. Aims.We aim to identify and characterize cores in the high-mass protocluster W49A, determine their evolutionary stages, and measure the associated lifetimes. Methods.We built a catalog of 129 cores extracted from an ALMA 1.3 mm continuum image at 0.26″ (2900 au) angular resolution. The association between cores and hypercompact or ultracompact HII(H/UC HII) regions was established from the analysis of VLA 3.3 cm continuum and H30αline observations. We also looked for emission of hot molecular cores (HMCs) using the methyl formate doublet at 218.29 GHz. Results.We identified 40 cores associated with an H/UC HIIregion and 19 HMCs over the ALMA mosaic. The 52 cores with an H/UC HIIregion and/or an HMC are assumed to be high-mass protostellar cores, while the rest of the core population likely consists of prestellar cores and low-mass protostellar cores. We found a good agreement between the two tracers of ionized gas, with 23 common detections and only four cores detected at 3.3 cm and not in H30α. The spectral indexes from 3.3 cm to 1.3 mm range from 1, for the youngest cores with partially optically thick free-free emission, to about −0.1, which is for the optically thin free-free emission obtained for cores that are likely more evolved. Conclusions.Using the H/UC HIIregions as a reference, we found the statistical lifetimes of the HMC and massive protostellar phases in W49N to be about 6 × 104yr and 1.4 × 105yr, respectively. We also showed that HMCs can coexist with H/UC HIIregions during a short fraction of the core lifetime, about 2 × 104yr. This indicates a rapid dispersal of the inner molecule envelope once the HC HIIis formed. 
    more » « less
  5. The physical mechanisms behind the fragmentation of high-mass dense clumps into compact star-forming cores and the properties of these cores are fundamental topics that are heavily investigated in current astrophysical research. The ALMAGAL survey provides the opportunity to study this process at an unprecedented level of detail and statistical significance, featuring high-angular resolution 1.38 mm ALMA observations of 1013 massive dense clumps at various Galactic locations. These clumps cover a wide range of distances (~2–8 kpc), masses (~102–104M), surface densities (0.1–10 g cm−2), and evolutionary stages (luminosity over mass ratio indicator of ~0.05 <L/M <450L/M). Here, we present the catalog of compact sources obtained with theCuTExalgorithm from continuum images of the full ALMAGAL clump sample combining ACA-7 m and 12 m ALMA arrays, reaching a uniform high median spatial resolution of ~1400 au (down to ~800 au). We characterize and discuss the revealed fragmentation properties and the photometric and estimated physical parameters of the core population. The ALMAGAL compact source catalog includes 6348 cores detected in 844 clumps (83% of the total), with a number of cores per clump between 1 and 49 (median of 5). The estimated core diameters are mostly within ~800–3000 au (median of 1700 au). We assigned core temperatures based on theL/Mof the hosting clump, and obtained core masses from 0.002 to 345M(complete above 0.23 M), exhibiting a good correlation with the core radii (M ∝ R2.6). We evaluated the variation in the core mass function (CMF) with evolution as traced by the clumpL/M, finding a clear, robust shift and change in slope among CMFs within subsamples at different stages. This finding suggests that the CMF shape is not constant throughout the star formation process, but rather it builds (and flattens) with evolution, with higher core masses reached at later stages. We found that all cores within a clump grow in mass on average with evolution, while a population of possibly newly formed lower-mass cores is present throughout. The number of cores increases with the core masses, at least until the most massive core reaches ~10M. More generally, our results favor a clump-fed scenario for high-mass star formation, in which cores form as low-mass seeds, and then gain mass while further fragmentation occurs in the clump. 
    more » « less